
diploma thesis

Structure learning of neural-symbolic
architectures

Martin Svatoš

May 2016

Thesis advisor: Ing. Gustav Šourek

Czech Technical University in Prague
Faculty of Electrical Engineering, Department of Computer Science









Acknowledgement
I would like to thank my advisor Gustav Šourek, for his patience and guidance while
getting familiar with the theory behind Lifted Relational Neural Networks, its compu-
tational engine and advices concerning writing this thesis. An acknowledgment belongs
also to all the people from the neural-symbolic community which have responded my
questions in that field.

Besides, I would like to thank all the family members, dear ones and fellow colleagues
for all kinds of support while studying at Czech Technical University in Prague and
Katholieke Universiteit Leuven.

Declaration
I declare that I worked out the presented thesis independently and I quoted all used
sources of information in accord with Methodical instructions about ethical principles
for writing academic thesis.

In Prague May 27, 2016 ...................................

v



Poděkování
Rád bych poděkoval mému vedoucímu Gustavu Šourkovi za jeho trpělivost a vedení
během seznamování se s Lifted Relational Neural Networks, jejich výpočetním mod-
elem a rady týkajících se obsahu této diplomové práce. Poděkování patří zároveň i
všem kolegům z komunity neurálně-symbolické integrace za jejich odpovědi v otázkách
týkajících se této domény.

Současně bych rád poděkoval celé rodině, blízkým a kolegům za všechny projevy pod-
pory během studijních let na Českém Vysokém Učení Technickém v Praze a Katholieke
Universiteit Leuven.

Prohlášení
Prohlašuji, že jsem předloženou práci vypracoval samostatně, a že jsem uvedl veškeré
použité informační zdroje v souladu s Metodickým pokynem o dodržování etických prin-
cipů při přípravě vysokoškolských závěrečných prací.

V Praze 27. 5. 2016 ...................................

vi



Abstract
Artificial neural networks are nowadays widely exploited in many research areas ranging
from object and speech recognition to machine translation. Their applications vary from
helping visually impaired people to recognize surroundings scenes, operating self-driving
cars, or playing Go on grand master level. These successful applications are typically
based on combinations of neural networks with other techniques.

Even though neural networks are used in so many areas, little work has been done
regarding the theory behind learning of their structures. The aim of this thesis is to
firstly gain knowledge on structure learning used in standard neural networks and the
domain of neural-symbolic integration, which is a field encompassing hybrid approaches
combining neural networks and mathematical logic. Secondly, to use this knowledge to
design a principal extension of the existing propositional structure learning techniques
to the first-order logic based neural-symbolic integration approaches.

As a result, several existing structure learning methods were selected, deeply elab-
orated, and extended for the use in a method combining first-order predicate logic
and neural networks. Performed experiments displayed improvements over the original
method on selected datasets.
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Abstrakt
Neuronové sítě jsou dnes hojně využívány v mnoha výzkumných oblastech sahající od
rozpoznávání objektů a textu až k automatickému překladu. Jejich aplikace pokrývají
rozpoznávání okolních scén pro lidi se zrakovým postižením, přes řízení autonomních
aut, po hraní Go na velmistrovské úrovni. Tyto úspěšné aplikace jsou typicky založeny
na kombinaci neuronových sítí s jinými přístupy.

Přestože jsou neurální sítě používány v tolika oblastech, teorie jejich strukturního
učení nebyla příliš rozvinuta. Cílem této práce je nejprve získat znalost strukturního
učení ze standardních neurálních sítí a z domény neurálně-symbolické integrace, což
je oblast, která zahrnuje hybridní přístupy kombinující neuronové sítě a matematickou
logiku. Za druhé se zaměřujeme na použití těchto znalostí k návrhu principiálního roz-
šíření existujících strukturních učících přístupů z výrokové logiky do predikátové logiky
prvního řádu v přístupech neurálně-symbolické integrace.

Několik existujících metod strukturního učení bylo vybráno, popsáno, otestováno
a rozšířeno pro použití s metodou kombinující predikátovou logiku prvního řádu a
neuronové sítě. Provedené experimenty ukazují zlepšení výsledků oproti původní metodě
na vybraných datasetech.

Klíčová slova
neurálně-symbolická integrace, strukturní učení, pozdvihnuté modely, relační učení
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1. Introduction

– "A machine cannot think, can it?"
– "If you describe me exactly what it
is that the machine cannot do, I can
always construct a machine that does
exactly that."

John Von Neumann, Princeton, 1948

1.1. Motivation

Artificial Neural Networks (ANNs) a a framework which, especially when combined with
other techniques, can produce interesting results in a wide range of tasks. The main
motivation for this thesis is an extension of ANNs with capabilities similar to those pro-
vided by relational learning (RL), sometimes also called Inductive Logic Programming
(ILP) [1].

Let us imagine that we are having a set of chemical compounds with labels denoting
whether a given compound, represented as a atom to atom binding structure, is car-
cinogenic. Our job is to develop a classifier providing an answer to a question Is the
given compound carcinogenic?. How to approach such a task with an attribute-value
classifier? We may create a fixed-length vector representation of these structures to be
employed by a standard attribute-vale machine learning model, such as SVM. But we
will never be able to fully describe all the possible variations of the compound structures
within this fixed-length vector. For a more interested reader we refer to [2].

One approach capable to effectively solve the presented situation is relational learn-
ing, where a logic program stands as a model for the learner. There is a huge gap
in expressiveness between the former and the later; it is similar to the gap between
propositional and first-order predicate logic (FOL) section 2.1, while relational learning
methods typically use FOL to describe the inputs as well as the learned model itself.

The aim of this thesis is to voyage undiscovered areas of neural-symbolic integration
(NSI) with focus on structure learning of neural networks within this domain, on both
propositional and FOL level. NSI is a field combining all kinds of logics with neural
networks. At the moment, there are several NSI methods combining propositional logic
with ANNs, but there are very few utilizing FOL. Moreover, total majority of structure
learning approaches within NSI focus purely on propositional logic. Thus, the novelty
of this thesis lies in transferring of these existing propositional-level structure-learning
approaches to the more expressive level of first-order logic.

1.2. Problem formulation

The problem is formulated as follows: investigate possible enhancements of first-order
predicate neural-symbolic integration approaches with structure learning.

1



1. Introduction

Structure learning in propositional NSI reduces to adding or removing set of neurons
or edges. In first-order predicate NSI, structure learning is principally a relational
learning task, because a structure of a neural network is given by a first-order predicate
theory. There are several ways of constructing or extending these theories, for example
by using crisp relational learners [1]. Instead of using crisp learners, we decided to
investigate already known propositional NSI approaches and transfer them to the first-
order predicate level. We further denote this process as lifting.

1.3. Thesis structure
This thesis is structured in the following way: this introduction chapter (Chapter 1) is
followed by Chapter 2 which contains basic definitions and brief theoretical foundations
of concepts used in this work. Although some of the definitions are clear, some of them
are adjusted for the sake of a more economical text. Chapter 3 reviews literature in
respective domains of the thesis.

The rest of the thesis can be divided into two main branches: a propositional and a
first-order predicate one. Chapter 4 describes propositional NSI methods which were
implemented within the thesis and experimentally compared in Chapter 5. Chapter 6
defines LRNNs, a method combining FOL and ANNs, on which the proposed lifted
structure learning approaches are experimentally compared in Chapter 9. These lifted
approaches are proposed in Chapters 7 and 8. Finally, Chapter 10 summarizes results
and propose interesting ideas found during the thesis development.

Appendix A contains implementation’s notes for methods from Chapters 4 and 8.
Appendix B contains brief settings used in presented experiments. Appendix C serves
as a brief guide for attached DVD.

2



2. Theoretical foundations

This chapter contains concept used in this thesis together with several definitions for
the sake of a more economical text. Some of the used definitions were taken from [3].

2.1. Logic

A logic is a mathematical tools used e.g. for modeling situations and proving facts
within these situations. In this thesis, propositional and first-order predicate logic is
used. We restrict ourself to only function and negation free logic, which is denoted as
first-order in the text.

A first-order logic theory is a set of formulae formed from constant, variables and
predicates. Constant symbols (e.g. adam) represent object in the domain. Variables
(e.g. X) ranges over the domain’s objects. Predicate symbols (e.g. 𝑠𝑖𝑏𝑙𝑖𝑛𝑔) express
relations among objects in the domain of their attributes. A term may be either con-
stant or variable. An atom is a predicate symbol applied to a tuple of terms (e.g.
𝑠𝑖𝑏𝑙𝑖𝑛𝑔(𝑋, 𝑎𝑑𝑎𝑚)); note that a predicate symbol with arity zero will be written with-
out parenthesis. Formulae are constructed from atoms using logical connectives and
quantifiers. A ground term does not contain any variable. A ground atom contains
only ground terms as arguments. A literal is an atom or its negation. A clause is
a universally quantified disjunction of literals, which will not be written in the thesis
because only those clauses will be used in the thesis. A definite clause has got exactly
one positive literal. A definite clause with no negative literals is called a fact. A definite
clause ℎ ⇐= ¬𝑏1 ∨ · · · ∨ ¬𝑏𝑘 can also be written as an implication ℎ ⇐= 𝑏1 ∧ · · · ∧ 𝑏𝑘.
The literal ℎ is then called head and the conjunction 𝑏1∧· · ·∧ 𝑏𝑘 is called body. Definite
clauses, which are not facts, are rules.

Given a first-order logic theory, the set of all ground atoms which can be constructed
using the constants and predicates present in the theory is its Herbrand base. A Her-
brand interpretation, assigns a truth value to each possible ground atom from a given
Herbrand base. A set of formulae is satisfiable if there exists at least one world in which
all formulae from the set are true; such a world is its Herbrand model. A satisfiable
set of definite clauses has a least Herbrand model and this model is unique. The least
Herbrand model of a function-free set of definite clauses (i.e. a Datalog theory) can be
constructed in finite number of steps using the immediate-consequence operator [4]. Im-
mediate consequence operator 𝑇𝑝 maps the space of Herbrand interpretations over some
Herbrand base ℬ back to itself as 𝑇𝑝 : ℐ(ℬ) ↦→ ℐ(ℬ). The mapping of 𝑇𝑝 is directly pre-
scribed by the theory 𝒫 such that for 𝐼 ∈ ℐ(ℬ) the 𝑇𝑝(𝐼) = {ℎ|(ℎ← 𝑏1 ∧ · · · ∧ 𝑏𝑘) ∈ 𝒫}
and 𝑏1 ∧ · · · ∧ 𝑏𝑘 ⊆ 𝐼. In other words, the operator 𝑇𝑝 expands the current set of true
atoms (interpretation 𝐼) with their immediate consequences as prescribed by the rules
in 𝒫.

Propositional logic can be seen as a special case of function and variable free first-
order logic with predicates arities res arities.

An initial or background theory denotes a theory given to a method as an input. While
denoting predicates without assigned variables or constant to the arguments, Prolog-
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2. Theoretical foundations

like notation denoting name and arity of a predicate will be used, e.g. 𝑠𝑖𝑏𝑙𝑖𝑛𝑔/2. By a
fresh variable is meant a variable that does not occur in a given clause or set.

Function 𝑝𝑟𝑒𝑑(𝑆) returns set of used predicates in a given set of clauses 𝑆. Function
|𝑆| is overloaded for two cases. It returns a number rules in a given set of clauses 𝑆, or
an absolute value for a real number 𝑆.

2.1.1. 𝜆𝜅 notation

A translation process of a logic theory, a rule set in other words, into neural networks
uses two types of nodes – ∧ and ∨. To simplify notation and the transfer process, 𝜆-𝜅
notation is used.

Thus, two types of predicates are defined – 𝜆 and 𝜅 expressing ∧ and ∨ respectively.
This notation will be used in the rest of this thesis for clear readability which type of
predicate is used. If there is a 𝜆 predicate inside a rule’s head, then we say that the
rule is 𝜆 rule; similar we say 𝜅 rule for the opposite case. Restrictions given over 𝜆 and
𝜅 are following: a 𝜆 predicate can be used only as a head of a 𝜆 rule or inside a body
of a 𝜅 rule. Contrary, a 𝜅 predicate can be used only as a head of 𝜅 rule or inside a 𝜆
rule.

Example 2.1. Having defined 𝜆 – 𝜅 notation, let us have two rules

foal(𝐴) ⇐= parent(𝐴, 𝑃 ) ∧ horse(𝑃 )
foal(𝐴) ⇐= sibling(𝐴, 𝑆) ∧ horse(𝑆)

which are translated into 𝜆 – 𝜅 notation as

𝜅foal(𝐴) ⇐= 𝜆foal1(𝐴)
𝜅foal(𝐴) ⇐= 𝜆foal2(𝐴)

𝜆foal1(𝐴) ⇐= 𝜅parent(𝐴, 𝑃 ) ∧ 𝜅horse(𝑃 )
𝜆foal2(𝐴) ⇐= 𝜅sibling(𝐴, 𝑆) ∧ 𝜅horse(𝑆)

There are two more restriction over those predicates. 𝜆 predicate can be implied by
only one rule, which can have multiple literals in its body. 𝜅 predicate can be implied
by multiple bodies, but each body must contain exactly one literal.

Moreover, we define base predicate which is predicate that occur in given set of sam-
ples; mathematically this function 𝑝𝑟𝑒𝑑 is used to return set of predicates that occur
in given theory; e.g. 𝑝𝑟𝑒𝑑({𝑠𝑖𝑏𝑙𝑖𝑛𝑔(𝑗𝑎𝑛, 𝑚𝑎𝑟𝑐𝑒𝑙𝑎), 𝑓𝑒𝑚𝑎𝑙𝑒(𝑚𝑎𝑟𝑐𝑒𝑙𝑎), 𝑚𝑎𝑙𝑒(𝑗𝑎𝑛)}) =
{𝑠𝑖𝑏𝑙𝑖𝑛𝑔/2, 𝑓𝑒𝑚𝑎𝑙𝑒/1, 𝑚𝑎𝑙𝑒/1}. Correspondingly, 𝑙𝑎𝑚𝑏𝑑𝑎𝑠 and 𝑘𝑎𝑝𝑝𝑎𝑠 are functions
returning only set of 𝜆 and 𝜅 predicates respectively, given a theory.

We say that rule is terminal if each predicate inside its body is a base predicate. The
longest path of a predicate is defined as follow: if the a predicate is terminal, then the
value is zero, otherwise the value is given by 1 plus the maximal value of longest paths
of predicates implying the original one.

2.2. Relational learning
Relational learning, sometimes also called as Inductive Logic Programming [1], is a
machine learning area, which aims to learn a first-order logic program that would solve
a problem. The main advantage of this approach is better capability of learning models
concerning more expressive level than propositional level.

4



2.3. Artificial Neural Networks

2.3. Artificial Neural Networks

An artificial neural network (ANN) is a biologically inspired mathematical model, con-
sisting of interconnected processing units called neurons, each of which is associated
with an activation function 𝑔𝑖 ∈ 𝒢 from some predefined family of differentiable func-
tions. Neural network then defines a mapping 𝑓 : R𝑚 ↦→ R𝑛 of input space to target
space vectors, parameterized by a set of weights 𝑤𝑖𝑗 ∈ R. By adapting weights, a pro-
cess that is referred as weight learning, of connections (edges) of a neural networks, its
mapping can be learnt to approximate some target function 𝑡 : R𝑚 ↦→ R𝑛. All methods
used in this thesis uses some variant of stochastic gradient descent or Backrpopaga-
tion with momentum [5]. MSE represents mean squared error, widely concept used in
weight learning processes.

We say that a neural network is composed from three type of layers and neurons –
input, corresponding to input data, hidden, and output, corresponding to output values.
Neurons form a architecture of a network, which can be also referred as structure or
topology. By output weights or connections only edges leading to output nodes are
meant. We say that an edge is an oriented connection from a source to target (both
being neurons). Given two adjacent, neighboring, layers of a neural networks, we say
that the one, closer to the input layer, is a previous layer w.r.t. the second; contrary,
we say that the layer, closer to the output layer, is the next one w.r.t. to the other.

For the sake of readability, we define several operations with ANNs that are executed
automatically. If the very last neuron of a layer is removed, the whole layer is removed
from a neural network. If an edge is added to the network without any note of its
weight, a random weight is assigned to the edge.

2.4. Threshold classifier

Neural networks are evaluated on binary classification problems in this thesis. In order
to decide whether a network’s output is positive or negative, e.g. the first or the second
class, a threshold classifier is needed. The threshold classifier is aimed to produce a
threshold, within range from zero to one (because a network’s outputs is produced by
a sigmoid function), to achieve the best possible accuracy on train samples.

To state the classification explicitly process, after each weight learning phase is done,
e.g. by Backrpopagation, a new threshold is learned to be coherent with just learned
model. The learning process of the threshold is straightforward: network’s outputs
values, corresponding to a train samples set, are sorted and each value between these
two adjacent values, together with zero and one, is investigated. A sample below this
value is classified as negative; otherwise it is classified as positive. A value producing
the best accuracy is selected as the final threshold.

Considering this threshold classifier, two well known concepts are to be defined. An
negative sample, classified as a positive one, is said to be false positives. Contrary, a
positive sample, classified as a negative one, is said to be false negatives.

2.5. Search

Generally speaking, a search is a process of iteratively expanding states by a successor
generator function, starting from an initial state, aimed to find a solution satisfying
some criteria, e.g. accuracy high enough. In this thesis, two types of searches is used –
local and beam search. The local search, used here, picks only the best, with respect
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to the accuracy value, successor among its generated children. Contrary beam search
traverses the search space, in other words expanded states, by prioritized order of a
heuristic values. Moreover, beam search does not expands all of its successors but only
a part of them. Its priority queue, where expanded successors are stored, has limited
length. Thus, if there are more successors in the queue than its limit, the ones with
lowest heuristic values are thrown away.

2.6. Genetic algorithms
Genetic algorithms (GA) is a computational model, inspired by natured, using multiple
individuals that correspond to states in parallel search. Individuals, state’s successors
in other words, are generated by two operations called mutation, which represents
generation of a successor state from a given one, and crossover, which corresponds to
mixing properties of two states, producing one or two new states. Genetic algorithms
uses a process called selection to decide which individuals will be transfered to the next
search loop, called population. Tournament selection was used within all experiments
in this thesis [6].
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3. Related work

This chapter contains survey of literature across NSI and ANNs fields. Both NSI and
structure learning within NSI and ANNs are reviewed in separate sections for better
readability.

One of the initial goals was to make a survey of NSI approaches across exhaustive
number of experiments. But there are two obstacles in doing so. Firstly, only a few
executable NSI approaches were found; after dozens of emails to NSI methods’ authors,
only four of them were found in a workable state. Secondly, NSI community still lacks
unified set of benchmarks and selecting appropriate ones would take time and effort
that was put into extension of current techniques.

3.1. Propositional neural-symbolic integration

The very fist combination of logic and ANNs dates back to [7]. Since then, the field has
been investigated in multiple ways, even extended to FOL case as it is reviewed in the
following section. Several methods arose from the transition process of propositional
rules to neural network structure described in [7].

Knowledge-Based Neural Networks (KBANN) [8, 9], a successor of earlier EBL-ANN
[10], is based on the idea of translating a set of non-recursive propositional rules (initial
theory) into neural network structure; thereafter weighs of such network are learned.
The initial rules may be produced by an expert or by a random generator. This
approach outperformed other NSI methods, which do not possess initial background
knowledge [9]. KBANN was extended in multiple ways by capability of processing a set
of recursive finite-state grammars [11], improving rule to network translation [12], im-
proving a network’s structure by adding neurons to mimic rules addition to an already
constructed network (TopGen) [13] or by genetic algorithm search for better structure
(REGENT ) [14]. Last known successor of KBANN is INSS [15, 16], which contains the
whole neural-symbolic cycle. It works by mining rules from a neural network, inserting
them back into the network structure in case that an expert evaluates these found rules
as helpful. In spite of this, the process is not fully automatic.

KBCNN [17] is very similar to KBANN in its network construction procedure. The
main discrepancy with KBANN lies in the used family of activation functions. Mean-
while KBANN and its extensions uses logistic sigmoid in most of the cases, KBCNN
uses certainty factor function [18], based on the MYCIN-like systems [19]. Drawback
of this function is that it handles only binary inputs. KBCNN was extended in mul-
tiple ways resulting in Certainty Factor Network [18], CLNet [20] and its special case
Induce-Net [21]. The first of these extension, Certainty Factor Network, does not need
initial theory as KBANN.

Following the Core method [22, 23], Connectionist Inductive Learning and Logic
Programming System (C-IL2P) [24] was the one of the first systems realizing neural-
symbolic learning cycle. The method takes an initial knowledge as KBANN, but it
allows recurrent connections within a network, but having these backward weights fixed
to 1. C-IL2P also differs with the former by the rule to network translation approach.
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The later produces always a three layers network to overcome possible problems of
a huge network’s structure. They claim that KBANN is not able to learn efficiently,
because of vanishing gradient and similar properties while having huge network in sense
of numbers of layers.

In [25] ERANN system was presented, which aimed to both rule extraction and
network construction at the same time. Moreover, some pruning techniques are used
to simplify the rule extraction phase.

Enormous work has been done in the field of rule extraction from neural networks.
For interested readers in this area, we recommend the survey part of [26].

3.2. First-order predicate neural-symbolic integration
Several methods, each based on different idea, were developed in aim to connect ANNs
and FOL. Unfortunately, only very little of them focus on structure learning. Some
of the approaches used encoding of logic to numerical values; but such a mapping is
hard to be preserved, e.g. to have two formulae that differ very little in both FOL and
numerical encoding is not an easy task.

FONN [27, 28] is a method having a four-layer network representing only flat theory
with negations and function; it is based on RBFNNs. Its aim is to represent and learn
an existential quantifier semantics and fuzzy logic.

CILP++ [29, 30] was created by integrating Bottom Clause Propositionalization
(BCP) with C-IL2P. In short, BCP generates bottom clauses of samples to transform
them to propositional logic. A subset of initial theory, here called background knowledge,
can be used to initialize structure and weights of the network.

Relational Neural Networks (RelNNs1) [31, 32] is a feed forward network with recur-
rent components, based on the scheme of relational database from which data come
from. The aim of this approach is to learn pattern from the data as well as statistical
information of the data described by a pattern. Later, RelNNs were enhanced with
Cascade Correlation [33], which together gave birth to Aggregation Cascade Correla-
tion Networks (ACCN) [34, 35]. So, the power of ACCNs is that it also builds structure
of a neural network; RelNNs itself is incapable of that. Later, it was seen as a special
case of GNN [36, 37].

PAN [38] system can learn first-order relations from an initial theory and a set of
samples with output predictions. It is based on several types of modules that act as a
neurons inside a network. Structure of these modules can be arbitrary, e.g. one can be
represented by a recurrent network. Invertible encoding was developed in order to use
PAN.

In [39, 40] method based on Topos theory [41] was presented. The idea is to translate
FOL to a variable-free representation, from which homogeneous equations function
can be generated. Then, a neural network is learned by these equations. Similarly,
FOLNN [42] constructs three layer feed forward neural network from an initial theory
and samples, which is thereafter learned in spirit of multi-instance learning [43, 44, 45].

FineBlend system [46, 47, 48] was developed as another connectionist system for
an acyclic logic program and for some level of accuracy. This method is the only
one NSI method, to our knowledge, capable of structure learning in sense of removing
and adding neurons to increase flexibility of the learning process. The main difference
[49] and between [46] is that the first one uses fibring neural networks [50]; the goal

1They were originally referred as RNN, but in spite of Recurrent Neural Networks, we used this
shortcut.
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of approximating an acyclic logic program is common in both approaches. Similar
approach to FineBlend was proposed in [51].

There has been other methods developed in this field, for example based on first-order
abductive inference [52], first-order reasoning system [53, 54, 55, 56], later enhanced by
structure learning [57], and its more expressive version based on bottom-up reduction
calculus [58]. In spirit of theorem proving and unification connected to ANNs, there
are several works, e.g. approximation of least general generalization [59, 60], SDL
resolution [61] or unification [62, 63, 64]. An extension of connectionist system to
handle multi-valued logic was investigated in [65].

3.3. Structure learning in ANNs approaches

Construction of neural networks’ structures can be categorized in the following way:
constructive, destructive or genetic algorithms approaches, as mentioned in [66]; there
is a possibility of someone else’s earlier categorization of these, however, this is the
earliest to our knowledge. Constructive approaches are based on searching minimal
network’s structure that is able to fit data within given error. These approaches start
from a minimal or some small structure, incrementally expanding the network according
to data. Destructive approaches reverse the previous idea, thus starting with a large
network’s structure, followed by iteratively pruning insignificant edges, neurons or both.
Genetic algorithms may combine both approaches by augmenting and pruning during
the search process.

3.3.1. Constructive approaches

This subsection contains constructive approaches, which start with a small network and
gradually extend it. Some of the earliest methods, concerning this idea, were driven by
the need of faster learning algorithms than Backpropagation, leaving the goal of precise
network’s structure behind. This approach can be faster than destructive as shown in
[67].

Cascade Correlation (CasCor) [33] is well known constructive method that has been
extended to numerous ANNs variants and problems [68, 69, 70, 71, 72]. The main
idea is to construct a hierarchical network evolving one useful neuron correlated with
outputs at the time. Moreover, instead of learning just one neuron, more candidates
may be tried and the best neuron selected; which exploits search space simultaneously
and mimics GMDH [73] a little bit. Similar method, driven by error curve of weight
learning algorithm, is called Dynamic Node Creation (DNC) [74]; it also reuses weights
from previous iterations. The later differs mainly by the resulting structures, only one
hidden node is presented, and by addition of non-correlated neurons to outputs.

There are more constructive methods based on the same ideas, for example extending
them by edge pruning techniques [75], using another weight learning methods [67] or
trying to develop neurons in a systematical way by inserting layers of neuron as well
[76].

Other techniques are based on linear programming (LP). One of the approach pro-
posed an idea of constructing neural network’s structures in polynomial time [77]. How-
ever, those were special cases for classification problems. The method, similar to [78, 79,
80], is based on mining a pattern describing a part of the dataset. Then, this pattern is
translated and incorporated into a neural network and correctly classified examples are
removed from the train set; such loop is repeated until error drops below a threshold.
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3.3.2. Destructive approaches
This section investigates some destructive methods. Those methods start with large
networks and aims to prune or trim them in some way to either get better error rate
or simplify its structure. However, constructive methods tend to be faster than de-
structive; this is caused mainly by two aspects. Firstly, weight learning algorithms are
computational demanding on larger networks than on smaller ones. Secondly, weight
learning algorithms may not find a suitable setting of weights while given a large net-
work, in a case that the instance need only a small. On the other hand, constructive
approach does not possess any ability to remove redundant neurons or edges.

Aim of changing neural network’s structure has also been investigated by the mean
of incorporating these changes directly into a weight learning algorithm, e.g. Backprop-
agation. Two of these methods are successive learning with forgetting (SLF) [81, 82]
and MLP2NL [83]. The common goal is to enhance the objective function of a weight
learning algorithm by a term describing penalization of a weight from a predefined
value. In the work of [84] similar methodology is introduced; in this case, any arbitrary
weight can have predefined value, which represents its attractor. Forgetting was used
as the key part in SLF; we note it here although it was primarily aimed to simplify
the network architecture to be faster while extracting rules from a network. Similarly,
ERANN uses penalty functions responding negatively to weights having large or small,
almost zero but non-zero, values. After the weight learning phase, edges with zero
weights are removed as well as neurons having no incoming nor outgoing edges.

Another method developed to simplify network structure is based on pruning the
least relevant neuron [85] or the least sensitive change in error [86] in a network. A
pruning method capable of removing single neuron or edge is presented in [87].

3.3.3. Genetic algorithms
Only few approaches, from the area of GA, are presented here, because we did not
investigate this area much in depth; this was mainly caused by our requirement of in-
terpretability of made changes during the structure learning process. One, previously
described, member of this group is REGENT. An evolutionary programming based
approach called EPNet is investigated in [88]. A well known GA approach for con-
structing ANNs’ structures is Group method of data handling (GMDH) [89]. GMDH is
data-driven approach which constructs the network in order to minimize given criterion.
Another well known GA approach is Hypercube-based Neuroevolution of Augmenting
Topologies (HyperNeat) [90]. HyperNEAT is a neuroevolution based search evolving a
CPPN, which constructs the network.

3.3.4. Others
The idea of escaping from a local minimum, in the weight learning phase, gave birth
to a method that inserts rules into the learnt network [91]. This does not fit into
structure learning directly. Although, they have claimed the first of such experiments,
the superiority of architecture based on prior knowledge over a randomly generated one
is well known since [8]. Also, the approach needs another source of rules, either an expert
or a software producing rules. On the other hand, they found that inserting a rule,
which is done by adding a proper set of neurons and weights, may increase accuracy on
examples not described by the rule as well. There are other works concerning structure
learning in different domains, e.g. regression neural networks [92].
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4. Structure learning approaches for
propositional neural-symbolic integration

The main goal of this thesis is to transfer already known structure learning algorithms
from propositional NSI and standard to first-order predicate level. Our first subgoal is
to compare structure learning approaches in the field of propositional logic, in order to
gain some directions and experience. This chapter describes selected algorithms from
that scope in depth; their comparison is done in Chapter 5. Besides that, this chapters
also servers as a theoretic part for method implemented in our propositional testbed;
e.g. main parameters are explained here. Although one may only cites original papers
of each algorithm, we decided to make detailed description because some sources are
not explicitly defining every used parameter. Also, our implementations may differ a
little bit from original sources, yet original sources’ functionalities are preserved.

For the comparison, we selected five constructive and one destructive methods. Firstly,
constructive approaches based purely on numerical values of neural networks are de-
scribed (sections 4.1 and 4.2). Secondly, approaches based on propositional rules are
described (sections 4.3 and 4.4), together with a genetic algorithm (section 4.5). Finally,
the chapter ends with one destructive algorithm (section 4.6) based only on changing
the optimization criterion of weight learning algorithms. We restrict ourself to only feed
forward neural networks; there are many reasons for that. Firstly, it is always better to
start with simpler task. Secondly, feed forward neural networks are capable to approx-
imate every function. Thirdly, there bigger potential of using non-recurrent version,
since there are very few first-order predicate NSI method using recurrent connections;
thus application of such extension would be limited.

4.1. Dynamic Node Creation
Weight learning algorithms, for example Backpropagation, can struggle while learning
weights of a huge network given a simple problem. One option to solve such a problem
is to start with a small network and in repetition learn weights and extend the network
by some neurons in that case that the error after the weight learning phase is not small
enough. Based on the universal approximation theorem [93], Dynamic Node Creation
(DNC) [74] works in this manner using and gradually extending only single hidden
layer.

The method starts with a three layer neural network having a single hidden neuron.
DNC gradually extends the hidden layer by a neuron each time the error curve of
weight learning process flattens. Each hidden neuron possess one incoming edge from
each input neuron and a bias, and one outgoing edge for each output neuron; other
connections are forbidden. Each new edge’s weight is randomly initialized. Weights
from previous weight learning phase are used fo the next phase to boost the search,
instead of random reinitialization. The method terminates when mean squared error
and maximal squared error, over samples, are below user specified thresholds.

The rest of this section contains description of DNC method in details. The algorithm
is shown in Algorithm 1. Firstly, network with one hidden neuron, input and output
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layers corresponding to samples is created (line 1). Thereafter, a cycle of weight learning
phase (line 4) is followed by addition of a new neuron (line 8), in the case that a neuron
limit has not been reached; otherwise the cycle runs until stopping criterion is met.
Note that limit of hidden neurons is our extension. The stopping criterion is satisfied
if maximal squared error is below 𝐶𝑚 threshold and also mean squared error is below
a threshold 𝐶𝑎 (line 5).

One can see that weight learning algorithm takes more arguments than a neural
network and a set of samples (line 4). The two next arguments 𝑤 and Δ𝑇 ensure
that the weight learning terminates when the error curve flattens. The method returns
squared errors on given samples after the last epoch. Flattening is detected when there
has been at least 𝑤 epochs and equation (4.1) holds; where 𝑚𝑖 stands for mean squared
error at time, or epoch, 𝑖, 𝑡 stands for current time index. Time index 0 stands for first
epoch and Δ𝑇 is a triggering value that is provided by a user.

|𝑚𝑡 −𝑚𝑡−𝑤|
𝑚0

< Δ𝑇 (4.1)

In the original paper, DNC uses Backpropagation as weights learning algorithm.
In the pseudocode, we changed notation to empathize that arbitrary weight learning
algorithm may be used.

Algorithm 1: Dynamic Node Creation
Input: Set of samples 𝑠𝑎𝑚𝑝𝑙𝑒𝑠, desired mean squared error 𝐶𝑎, desired maximal

squared error 𝐶𝑚, limit of added neurons 𝑛𝑒𝑢𝑟𝑜𝑛𝑠𝐿𝑖𝑚𝑖𝑡, width of time
window 𝑤 and trigger slope Δ𝑇

Output: Learned neural network
1 𝑛𝑒𝑡𝑤𝑜𝑟𝑘 ← 𝑐𝑜𝑛𝑠𝑡𝑟𝑢𝑐𝑡𝑁𝑒𝑡𝑤𝑜𝑟𝑘(𝑠𝑎𝑚𝑝𝑙𝑒𝑠)
2 ℎ𝑖𝑑𝑑𝑒𝑛𝑁𝑜𝑑𝑒𝑠← 1
3 while true do
4 𝑒𝑟𝑟𝑜𝑟𝑠← 𝑤𝑒𝑖𝑔ℎ𝑡𝑠𝐿𝑒𝑎𝑟𝑛𝑖𝑛𝑔𝐴𝑙𝑔(𝑛𝑒𝑡𝑤𝑜𝑟𝑘, 𝑠𝑎𝑚𝑝𝑙𝑒𝑠, 𝑤, Δ𝑇 )
5 if 𝑚𝑎𝑥(𝑒𝑟𝑟𝑜𝑟𝑠) ≤ 𝐶𝑚 ∧𝑚𝑒𝑎𝑛(𝑒𝑟𝑟𝑜𝑟𝑠) ≤ 𝐶𝑎 then
6 break
7 else if ℎ𝑖𝑑𝑑𝑒𝑛𝑁𝑜𝑑𝑒𝑠 < 𝑛𝑒𝑢𝑟𝑜𝑛𝑠𝐿𝑖𝑚𝑖𝑡 then
8 𝑎𝑑𝑑𝐻𝑖𝑑𝑑𝑒𝑛𝑁𝑜𝑑𝑒(𝑛𝑒𝑡𝑤𝑜𝑟𝑘)
9 ℎ𝑖𝑑𝑑𝑒𝑛𝑁𝑜𝑑𝑒𝑠← 1 + ℎ𝑖𝑑𝑑𝑒𝑛𝑁𝑜𝑑𝑒𝑠

10 return 𝑛𝑒𝑡𝑤𝑜𝑟𝑘

For illustration, Figure 4.1 shows initial network’s architecture (Figure 4.1a) and its
structure after adding the second hidden neuron (Figure 4.1b) on a problem with three
inputs and two outputs. Note that weights are not shown as well as biases.

4.2. Cascade Correlation

Cascade Correlation (CasCor) [33] was originally developed to overcome step size and
moving target problems while using Backpropagation, but we focus only on the later.
The method gradually builds up neural network of neurons that should behave as useful
detectors correlated with network’s outputs. Since each new hidden neuron possesses
one incoming edge from each input and hidden neuron, the structure mimics a cascade
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Figure 4.1. Example of constructed networks by DNC method on dataset having three inputs
and two outputs. Input, hidden and output neurons are displayed in green, blue and red
color respectively. Biases and weights are not shown.

(see Figure 4.2c), thus the name. Each output neuron possesses one incoming edge
from each hidden and input neuron.

In short, step size is connected to gradient optimization, where one would like to
have automatically adjusting size of step instead of a constant. Several solutions exist
for this kind of problem, for example momentum [5]. Cascade Correlation resolve this
problem by using Quickprop [94]. Instead of using Quickprop, we use Backpropagation
in all cases of weight learning, since our goal is structure learning.

The second problem is the moving target problem. In short, each neuron in a network
would like to become a useful detector of some feature in a given problem, but the
inability of communication between units while learning weights may result in moving
target problem. Let us have two hidden neurons 𝐴 and 𝐵 at the same layer. The 𝐴 is
producing bigger error than 𝐵, thus the previous layer’s neurons would act according
to herd effect to compensate 𝐴’s error. After 𝐴’s error is below 𝐵’s one, the same
herd effect may arise for those previous layer’s neurons – they aim to compensate 𝐵’s
error. This may take a long time before previous layer’s neurons split to two groups,
one compensating 𝐴’s and the second 𝐵’s error.

Now, we describe the algorithm, which is displayed in Algorithm 2, in details. The
method starts by constructing a neural network with input and output layers corre-
sponding to samples (line 1). Each output neuron possesses one incoming edge from
input neuron. Thereafter, outputs’ weight learning phase and a new hidden neuron
generation, and addition, repeats until mean squared error is below given threshold
𝑒𝑟𝑟𝑜𝑟𝑇ℎ𝑟𝑒𝑠ℎ𝑜𝑙𝑑, or the number of hidden neurons reaches given limit 𝑛𝑒𝑢𝑟𝑜𝑛𝑠𝐿𝑖𝑚𝑖𝑡.
During learning of outputs weights, only edges incoming to output neurons are learnt
(line 4). Originally, this was done by Quickprop, but we use Backpropagation instead.
Learning only output weights means that no propagation of error is done; this fact quite
speed ups the learning. The original idea is that all edges expect output ones are frozen
(they are not taken into account during weight learning), which is the same thing as
we describe.

Next phase in the loop is focused on generating a new neuron (line 9). The algorithm
creates a number of candidates according to 𝑐𝑎𝑛𝑑𝑖𝑑𝑎𝑡𝑒𝑠𝑆𝑖𝑧𝑒, each one of them can be
initialized with different activation function, incoming edges or weights. These neurons,
called candidates, can then be trained in parallel to maximize their correlation to output
neurons; to be precise incoming weights of a candidate are updated to maximize its
correlation. The only constrain over all candidates is that each one can have incoming
edges only from already added network’s input and the hidden neurons.
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Figure 4.2. Example of constructed networks by Cascade Correlation method on dataset having
three inputs and two outputs. Input, hidden and output neurons are displayed by green, blue
and red color respectively. Biases and weights are not shown.

Finally, one candidate with maximal correlation (line 12) is selected and added to
the network (line 13). Weights of incoming edges to 𝑐𝑎𝑛𝑑𝑖𝑑𝑎𝑡𝑒 are set up to weights
learnt during the correlation maximization process. For each output neuron 𝑜, new edge
with random initial weight is added from 𝑐𝑎𝑛𝑑𝑖𝑑𝑎𝑡𝑒 to 𝑜. For illustration, the network
construction is shown in Figure 4.2.

The one and only part, which is left to be described, is the correlation maximization
process (line 10). The correlation 𝐶 is given by the sum over all output neurons 𝑜 of the
magnitude of the correlation between residual error 𝐸𝑜 and the value of candidate 𝑉 ,
which is given by equation (4.4), where 𝑠 stands for a sample from samples, 𝑜 stands for
an output neuron of the network, 𝑉𝑠 is the value of the candidate neuron given sample
𝑠, 𝐸𝑠,𝑜 is the residual output error given a sample 𝑠 and an output neuron 𝑜. 𝑉𝑠 and
𝐸𝑠,𝑜 are averaged values over samples; equations (4.2) and (4.3). In fact, equation (4.4)
is not correlation but covariance, but we stick to the used naming convention.

𝑉 = 1
|𝑠𝑎𝑚𝑝𝑙𝑒𝑠|

∑︁
𝑠

𝑉𝑠 (4.2)

𝐸𝑜 = 1
|𝑠𝑎𝑚𝑝𝑙𝑒𝑠|

∑︁
𝑠

𝐸𝑠,𝑜 (4.3)

𝐶 =
∑︁

𝑜

|
∑︁

𝑠

(𝑉𝑠 − 𝑉 )(𝐸𝑠,𝑜 − 𝐸𝑜)| (4.4)

In order to maximize 𝐶, its partial derivations equation (4.5) have to be computed,
which can then be used in delta rule to perform gradient ascent. Although Quickprop
is used in the original paper, we use adjusted Backpropagation for the gradient ascent
process. Speaking of equation (4.5), full description comes handy; 𝑐𝑜𝑟𝑟𝑒𝑙𝑎𝑡𝑖𝑜𝑛𝑜 is the
correlation between the candidate neuron and an output, 𝑓 ′

𝑠 is derivative of the candi-
date’s activation function given the input 𝑠 w.r.t. the sum of its inputs, 𝐼𝑠,𝑖 is the input
received by the candidate from a neuron 𝑖 given a sample 𝑠.

𝜕𝐶

𝜕𝑤𝑖
=

∑︁
𝑜

sign(𝑐𝑜𝑟𝑟𝑒𝑙𝑎𝑡𝑖𝑜𝑛𝑜)
∑︁

𝑠

(𝐸𝑠,𝑜 − 𝐸𝑜)𝑓 ′
𝑠𝐼𝑠,𝑖 (4.5)

Besides the speed up of learning candidates in pool in parallel, another speed up
arises when the values of the network’s neurons, except the current candidate, are
cached. This is possible since weights of incoming edges to these neurons do not change
(they are frozen), thus values of these neurons do not change as well.
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Algorithm 2: Cascade Correlation
Input: Set of samples 𝑠𝑎𝑚𝑝𝑙𝑒𝑠, desired mean squared error 𝑑𝑒𝑠𝑖𝑟𝑒𝑑𝐸𝑟𝑟𝑜𝑟, limit of

added neurons 𝑛𝑒𝑢𝑟𝑜𝑛𝑠𝐿𝑖𝑚𝑖𝑡 and number of candidates 𝑐𝑎𝑛𝑑𝑖𝑑𝑎𝑡𝑒𝑠𝑆𝑖𝑧𝑒
Output: Learnt neural network

1 𝑛𝑒𝑡𝑤𝑜𝑟𝑘 ← 𝑐𝑜𝑛𝑠𝑡𝑟𝑢𝑐𝑡𝑁𝑒𝑡𝑤𝑜𝑟𝑘(𝑠𝑎𝑚𝑝𝑙𝑒𝑠)
2 ℎ𝑖𝑑𝑑𝑒𝑛𝑁𝑜𝑑𝑒𝑠← 0
3 while true do
4 𝑀𝑆𝐸 ← 𝑙𝑒𝑎𝑟𝑛𝑂𝑢𝑡𝑝𝑢𝑡𝑊𝑒𝑖𝑔ℎ𝑡𝑠(𝑛𝑒𝑡𝑤𝑜𝑟𝑘, 𝑠𝑎𝑚𝑝𝑙𝑒𝑠)
5 if ℎ𝑖𝑑𝑑𝑒𝑛𝑁𝑜𝑑𝑒𝑠 ≥ 𝑛𝑒𝑢𝑟𝑜𝑛𝑠𝐿𝑖𝑚𝑖𝑡 ∨𝑀𝑆𝐸 ≤ 𝑑𝑒𝑠𝑖𝑟𝑒𝑑𝐸𝑟𝑟𝑜𝑟 then
6 return 𝑛𝑒𝑡𝑤𝑜𝑟𝑘

7 𝑐𝑎𝑛𝑑𝑖𝑑𝑎𝑡𝑒𝑠← ∅
8 for 𝑖 ∈ 1 . . . 𝑐𝑎𝑛𝑑𝑖𝑑𝑎𝑡𝑒𝑠𝑆𝑖𝑧𝑒 do
9 𝑛𝑒𝑢𝑟𝑜𝑛← 𝑔𝑒𝑛𝑒𝑟𝑎𝑡𝑒𝐶𝑎𝑠𝐶𝑜𝑟𝑁𝑜𝑑𝑒(𝑛𝑒𝑡𝑤𝑜𝑟𝑘)

10 𝑚𝑎𝑥𝑖𝑚𝑖𝑧𝑒𝐶𝑜𝑟𝑟𝑒𝑙𝑎𝑡𝑖𝑜𝑛(𝑛𝑒𝑢𝑟𝑜𝑛, 𝑛𝑒𝑡𝑤𝑜𝑟𝑘, 𝑠𝑎𝑚𝑝𝑙𝑒𝑠)
11 𝑐𝑎𝑛𝑑𝑖𝑑𝑎𝑡𝑒𝑠← {𝑛𝑒𝑢𝑟𝑜𝑛} ∪ 𝑐𝑎𝑛𝑑𝑖𝑑𝑎𝑡𝑒𝑠

12 𝑏𝑒𝑠𝑡𝐶𝑎𝑛𝑑𝑖𝑑𝑎𝑡𝑒← argmax
𝑐𝑎𝑛𝑑𝑖𝑑𝑎𝑡𝑒 ∈ 𝑐𝑎𝑛𝑑𝑖𝑑𝑎𝑡𝑒𝑠

𝑐𝑜𝑟𝑟𝑒𝑙𝑎𝑡𝑖𝑜𝑛(𝑐𝑎𝑛𝑑𝑖𝑑𝑎𝑡𝑒)

13 𝑎𝑑𝑑𝐶𝑎𝑠𝑐𝑎𝑑𝑒𝐻𝑖𝑑𝑑𝑒𝑛𝑁𝑜𝑑𝑒(𝑏𝑒𝑠𝑡𝐶𝑎𝑛𝑑𝑖𝑑𝑎𝑡𝑒, 𝑛𝑒𝑡𝑤𝑜𝑟𝑘)
14 ℎ𝑖𝑑𝑑𝑒𝑛𝑁𝑜𝑑𝑒𝑠← 1 + ℎ𝑖𝑑𝑑𝑒𝑛𝑁𝑜𝑑𝑒𝑠

15 return 𝑛𝑒𝑡𝑤𝑜𝑟𝑘

4.3. Knowledge Based Artificial Neural Networks

One of the first hybrid approach in neural-symbolic integration is Knowledge Based
Artificial Neural Networks (KBANN) [8, 9]. The method constructs a neural network’s
structure from an acyclic propositional theory, then it uses arbitrary weights learning
algorithm (Backpropagation in original paper). The network structure is created in a
way preserving logical conjunctives (∧, ∨); this translation mechanism was originally
presented in [7]. They showed that such approach outperform purely connectionist
and symbolic systems. Firstly, the method’s pseudocode is sketched. After that, the
KBANN’s construction process is described, since it is the most important idea behind
the method.

The original system from [9] is capable of processing besides binary, also nominal,
hierarchical, linear and ordered features but these extensions were not implemented,
thus their are not discussed. In [8], they proposed and tested a way of inserting rules to
an already constructed KBANN network as an option to escape from local minimum.
Even though the process is trivial, the rules should be provided by an expert, which is
not always available.

The method’s pseudocode is shown in Algorithm 3. Firstly, if given propositional
theory is cyclic , the algorithm terminates with 𝑛𝑢𝑙𝑙 (line 2). Secondly, the network is
constructed from the given dataset and rules (line 3). Finally, the network’s weights
are learnt by an arbitrary algorithm (line 4).

The rest of this section deals with the construction of a KBANN network given rules,
samples and interpretation parameter 𝜔. We describe all steps of the process on a
running example. Let us suppose, for the running example, that we have a dataset
with three inputs 𝑎, 𝑏, 𝑐 and two outputs 𝑥 and 𝑦. Given theory is described by
𝑇 = {𝑥 ⇐= 𝑎, 𝑚 ⇐= 𝑎, 𝑚 ⇐= ¬𝑎 ∧ 𝑏, 𝑝 ⇐= 𝑏, 𝑤 ⇐= 𝑎 ∧ 𝑝}.

Firstly, the given theory is transformed so that each atom 𝑎ℎ𝑒𝑎𝑑, being implied by
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4. Structure learning approaches for propositional neural-symbolic integration

Algorithm 3: KBANN
Input: Set of samples 𝑠𝑎𝑚𝑝𝑙𝑒𝑠, neuron interpretation parameter 𝜔 and initial

rules 𝑟𝑢𝑙𝑒𝑠
Output: Learned neural network or 𝑛𝑢𝑙𝑙 given theory is cyclic

1 if 𝑖𝑠𝑇ℎ𝑒𝑜𝑟𝑦𝐴𝑐𝑦𝑐𝑙𝑖𝑐(𝑟𝑢𝑙𝑒) then
2 return 𝑛𝑢𝑙𝑙

3 𝑛𝑒𝑡𝑤𝑜𝑟𝑘 ← 𝑐𝑜𝑛𝑠𝑡𝑟𝑢𝑐𝑡𝑁𝑒𝑡𝑤𝑜𝑟𝑘(𝑟𝑢𝑙𝑒𝑠, 𝑠𝑎𝑚𝑝𝑙𝑒𝑠, 𝜔)
4 𝑤𝑒𝑖𝑔ℎ𝑡𝐿𝑒𝑎𝑟𝑛𝑖𝑛𝑔𝐴𝑙𝑔(𝑛𝑒𝑡𝑤𝑜𝑟𝑘, 𝑠𝑎𝑚𝑝𝑙𝑒𝑠)
5 return 𝑛𝑒𝑡𝑤𝑜𝑟𝑘

more than one rule in the theory, is replaced by a fresh different atoms 𝑎𝑖 in those
rule definitions and set of new rules in the form 𝑎ℎ𝑒𝑎𝑑 ⇐= 𝑎𝑖 for each original rule
definitions. This transformation roots from the inability of a single neuron to behave as
a head of multiple rule definitions at the same time; this is the same reason why 𝜆 and
𝜅 notation were presented. For example, take rules 𝑚 ⇐= 𝑎 and 𝑚 ⇐= ¬𝑎, 𝑏. The
heads in those rules will be renamed, 𝜆𝑚′ ⇐= 𝑎, 𝜆𝑚′′ ⇐= ¬𝑎 ∧ 𝑏, and two new rules
will be added 𝜅𝑚 ⇐= 𝜆𝑚′ and 𝜅𝑚 ⇐= 𝜆𝑚′′ . This transformation preserves ∧ and
∨ behavior given at the beginning, because, as one can see, 𝑚′ and 𝑚′′ (𝑎𝑖 in general)
preserves their ∧ behavior and 𝑚 (𝑎ℎ𝑒𝑎𝑑) preserve its ∨ behavior. Thus theory 𝑇 after
transformation will look like 𝑇 ′ = {𝑥 ⇐= 𝑎, 𝜆𝑚′ ⇐= 𝑎, 𝜆𝑚′′ ⇐= ¬ 𝑎 ∧ 𝑏, 𝜅𝑚 ⇐=
𝜆𝑚′ , 𝜅𝑚 ⇐= 𝜆𝑚′′ , 𝑝 ⇐= 𝑏, 𝑤 ⇐= 𝑎 ∧ 𝑝}. To be clear, 𝜆 and 𝜅 were used here
for illustration; in the propositional level, there is no restriction over their bodies and
occurrences in heads.

Secondly, the network with corresponding input and output neurons to the dataset
is created; this is shown in Figure 4.3a. Then, the transformed rules 𝑇 ′ are added to
the network so that each neuron corresponding to a rule head is in the closest layer
to the input layer, preserving the non-recursiveness. In other words, layer index of a
neuron is given by the maximal layer index of its predecessors plus one; in case that
all predecessors are input neurons, the neuron is in the first hidden layer. For each
pair body atom 𝑏𝑎 implying a head atom ℎ𝑎, there is an outgoing edge from 𝑏𝑎 to ℎ𝑎

with weight 1, or −1 in case that 𝑏𝑎 is negated literal in the body. The last step of
this network construction phase, is adjusting biases of neurons to preserve the ∧ and
∨ behavior. For each ∨ neuron (we remember them from the transformation process),
its incoming edge’s weight from bias is set to −𝜔

2 . For each ∧ neuron (all others), its
incoming edge’s weight from bias is set to −𝜔𝑙

2 , where 𝑙 is number of literals in body
of rule implying the head atom represented by the neuron. The idea, on which, those
biases’ setting is created, arisen from the requirement of activation of a neuron when
at least one predecessor, and all predecessors are active to simulate ∨ and ∧ behavior
respectively. So, at the end of this construction, the network constructed upon 𝑇 ′ is
shown figure 4.3b.

Thirdly, for each two neurons from adjacent layers, a feed forward edge with a zero
weight is added in case that there is no edge between those neurons. Finally, each
weight is perturbed by a small, randomly generated number; this is done to preserve
the problem connected to symmetry in neural networks [95]. Structure of the final
KBANN network is shown in Figure 4.3c.
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Figure 4.3. Example of constructed networks by KBANN method on the running example.
Input, output, ∧ and ∨ neurons are displayed by green, red, orange purple and color respec-
tively. Biases and weights are not shown.

4.4. Topology Generator

KBANN only constructs single neural network from an initial theory, as described in
the previous section. It does not possess any structure learning at all. Focused on the
topology (structure) of KBANN’s network, [13] developed a heuristically driven search
called Topology Generator (TopGen), which aims to insert neurons into a KBANN
network. The novelty of this approach lies in the neurons insertion itself – adding a
neuron should preserve the same meaning as extending propositional theory by a rule
(or modifying a subset of the theory).

TopGen uses beam search with a cutoff on maximal length of open list (see sec-
tion 2.5), which is not as interesting. TopGen was designed to insert new neurons into
a KBANN network, since KBANN is capable only of removing antecedents from ex-
isting rules, e.g. zero weight on particular edge, but unable to induce new rules into
the network. The neuron extension method arose from the assumption that in large
neural networks an output value of a hidden neuron is always close to its maximum
or minimum, thus a neuron’s activation function can be seen as a step-wise. Based
on this, TopGen classifies whether a hidden neuron is false positive or false negative
with respect to the network’s output values. The one and only unclear thing from [13]
is the classification process of a hidden neuron’s behavior to a step function. So, we
have set up boundaries for which a hidden neuron is classified as inactive or as active;
e.g. for sigmoid function – inactive and active for the output values ranging from zero
to 0.1 and 0.9 to one respectively. TopGen firstly splits a dataset to two parts, using
one (train set) for weight learning and the second one (validation set) for false positive
and false negative neurons classification. The main idea is to find neurons producing
error because of a bad generalization on the validation dataset rather than memoriza-
tion, which would be yielded by classification on train set. Thereafter, for each neuron,
new neural network is constructed in order to decrease false positives or false negatives
producing by that neuron.

TopGen uses beam search, starting from an initial state, which is given by a network
produced by KBANN. In spite of space, we describe only the part of hidden neurons
extension, because other parts were already described sections 2.5 and 4.3. Pseudocode
for hidden neurons classification and extension is shown in Algorithm 4. Firstly, TopGen
counts each hidden neuron with bounded activation function, e.g. from 0 to 1, a number
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4. Structure learning approaches for propositional neural-symbolic integration

Algorithm 4: TopGen’s hidden neuron classification and extension
Input: Set of samples 𝑠𝑎𝑚𝑝𝑙𝑒𝑠, number of successors 𝑠𝑢𝑐𝑐𝑒𝑠𝑠𝑜𝑟𝑠𝑆𝑖𝑧𝑒, in/active

parameter 𝑖𝑛𝐴𝑐𝑡𝑖𝑣𝑒 and learnt network by KBANN 𝑛𝑒𝑡𝑤𝑜𝑟𝑘
Output: List of learnt neural networks

1 𝑐𝑎𝑛𝑑𝑖𝑑𝑎𝑡𝑒𝑠← 𝑝𝑟𝑜𝑑𝑢𝑐𝑒𝐹𝑃𝐶𝑜𝑢𝑛𝑡𝑒𝑟𝑠(𝑠𝑎𝑚𝑝𝑙𝑒𝑠, 𝑛𝑒𝑡𝑤𝑜𝑟𝑘, 𝑖𝑛𝐴𝑐𝑡𝑖𝑣𝑒)
2 𝑐𝑎𝑛𝑑𝑖𝑑𝑎𝑡𝑒𝑠← 𝑝𝑟𝑜𝑑𝑢𝑐𝑒𝐹𝑁𝐶𝑜𝑢𝑛𝑡𝑒𝑟𝑠(𝑠𝑎𝑚𝑝𝑙𝑒𝑠, 𝑛𝑒𝑡𝑤𝑜𝑟𝑘, 𝑖𝑛𝐴𝑐𝑡𝑖𝑣𝑒) ∪ 𝑐𝑎𝑛𝑑𝑖𝑑𝑎𝑡𝑒𝑠
3 𝑠𝑜𝑟𝑡𝑒𝑑← 𝑠𝑜𝑟𝑡𝐴𝑐𝑐𝑜𝑟𝑑𝑖𝑛𝑔𝑇𝑜𝐶𝑜𝑢𝑛𝑡𝑒𝑟𝑠(𝑐𝑎𝑛𝑑𝑖𝑑𝑎𝑡𝑒𝑠)

𝑠𝑜𝑟𝑡𝑒𝑑← 𝑡𝑎𝑘𝑒𝐹 𝑖𝑟𝑠𝑡𝑁(𝑠𝑜𝑟𝑡𝑒𝑑, 𝑠𝑢𝑐𝑐𝑒𝑠𝑠𝑜𝑟𝑠𝑆𝑖𝑧𝑒)
4 𝑒𝑥𝑡𝑒𝑛𝑑𝑒𝑑← ∅
5 for (𝑛𝑒𝑢𝑟𝑜𝑛, 𝑖𝑠𝐹𝑃, 𝑐𝑜𝑢𝑛𝑡) ∈ 𝑠𝑜𝑟𝑡𝑒𝑑 do
6 𝑐ℎ𝑖𝑙𝑑← 𝑖𝑛𝑠𝑒𝑟𝑡𝑁𝑜𝑑𝑒(𝑛𝑒𝑡𝑤𝑜𝑟𝑘, 𝑛𝑒𝑢𝑟𝑜𝑛, 𝑖𝑠𝐹𝑃 )
7 𝑤𝑒𝑖𝑔ℎ𝑡𝐿𝑒𝑎𝑟𝑛𝑖𝑛𝑔(𝑐ℎ𝑖𝑙𝑑, 𝑠𝑎𝑚𝑝𝑙𝑒𝑠)
8 𝑒𝑥𝑡𝑒𝑛𝑑𝑒𝑑← {𝑐ℎ𝑖𝑙𝑑} ∪ 𝑒𝑥𝑡𝑒𝑛𝑑𝑒𝑑

9 return 𝑒𝑥𝑡𝑒𝑛𝑑𝑒𝑑

of false positives and false negatives situation of that neuron (lines 1 and 2) over all
samples w.r.t. the network outputs, given a threshold value 𝑖𝑛𝐴𝑐𝑡𝑖𝑣𝑒, which creates
two intervals, e.g. from 0 to inActive and from 1 − 𝑖𝑛𝐴𝑐𝑡𝑖𝑣𝑒 to 1; this is stored as a
triple containing the neuron, FP or FN count and a boolean expressing whether the
counter is FP or not. Then, these records are sorted according to FP/FN counters in
descending order (line 3), breaking ties in favour of neurons closer to the input layer;
only first triples of size 𝑠𝑢𝑐𝑐𝑒𝑠𝑠𝑜𝑟𝑠𝑆𝑖𝑧𝑒 (line 3) are taken for later processing. For each
of the selected triples, new network is constructed base on two fact – given neuron and
whether the counter was FP or not. The new network is learnt by weight learning
algorithm with a learning rate decay that is the product of 𝑙𝑒𝑎𝑟𝑛𝑖𝑛𝑔𝐷𝑒𝑐𝑎𝑦 constant
and learning rate which the predecessor’s network was learnt with (line 7). Finally, list
of such extended networks is returned (line 9).

4.4.1. Rule-like neuron insertion
Probably the most important TopGen’s part, neuron insertion, is to be explained in the
rest of this section. Firstly, the algorithm needs to recognize, whether a given neuron is
∧ or ∨ one. The problem reduces to another one: classify whether a given hidden neuron
is closer to ∧ or ∨ neuron. A ∧ neuron is active only if all of its positive antecedents are
active and negative antecedents are inactive. Thus its bias must be slightly less than
sum of active inputs. A ∨ neuron is active if at least on of its antecedents is active.
Thus the neuron’s bias must be slightly greater the sum of negative incoming weights.
Thus, a neuron is considered to be ∧ in case that the neuron’s bias is closer to the sum
of positive incoming weights than to the sum of negative weights; otherwise it is a ∨
neuron.

Secondly, after the neuron classification, insertion of new rules into a network can be
presented. The aim is at decrease of false positives and false negatives. If a ∧ neuron
produces false positives, to decrease its firing rate, let us add one antecedent to its body.
This antecedent is represented by a fresh new neuron, called base neuron, which possess
one new incoming edge for each input neuron. If a ∧ neuron 𝑛 produces false negatives,
the aim is to increase its firing rate. Thus new neuron ∧ neuron 𝑛𝑎 is constructed.
𝑛𝑎 takes two incoming edges – one from 𝑛 and one from fresh new base neuron. All
previous output connections of 𝑛 are moved to be outgoing edges of 𝑛𝑎. See Figure 4.4
for illustrative example.
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Figure 4.4. Example of structure extension after detecting a ∧ neuron (Figure 4.4a) being false
positive (Figure 4.4b) and being false negative (Figure 4.4c). ∧, ∨, base and arbitrary neurons
are displayed by orange, purple, yellow and grey color respectively. Biases and weights are
not shown.
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Figure 4.5. Example of structure extension after detecting a ∨ neuron (Figure 4.5a) being false
positive (Figure 4.5c) and being false negative (Figure 4.5b). ∧, ∨, base and arbitrary neurons
are displayed by orange, purple, yellow and grey color respectively. Biases and weights are
not shown.

In the case of ∨ neuron 𝑛𝑜, the case is similar, but opposite. To decrease false
negatives a fresh new base neuron is added to the network and outgoing edge to 𝑛𝑜 is
added. To decrease false positives, new ∧ neuron 𝑛𝑎 is added. 𝑛𝑎 takes two incoming
weights, one from 𝑛𝑜 and one from fresh new base neuron; all previous outgoing edges
from 𝑛𝑜 are moved, so they are outputs of 𝑛𝑎 neuron.

The process described here is aimed to decrease firing power of neurons that are
probably negatively correlated to the output. Thus, this ideas should not work on
several cases, for example a problem that has go multiple outputs that are negatively
correlated between each other.

4.5. Refining, with Genetic Evolution, Network Topologies

Although TopGen searches for better network’s structure by gradually extending the ini-
tial one, in [14] they search for a bigger number of possibilities. They presented genetic
algorithm called Refining, with Genetic Evolution, Network Topologies (REGENT),
which is driven by the same goal – to find better network’s structure corresponding
to data, operating on KBANN network as well. The only parts of genetic algorithm,
described in section 2.6, that are to be designed specially for REGENT are mutation
and crossover operators. The algorithm uses train and validation set in the same way
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Figure 4.6. Example of structure changes to initial neural network (Figure 4.6c) after neuron
deletion mutation on neuron ℎ1 (Figure 4.6b) and ℎ3 (Figure 4.6c). Inputs, hidden and
output neurons are displayed by green, blue and red color respectively. Biases and weights
are not shown.

as TopGen.

4.5.1. Mutations

REGENT uses two mutation operators – neuron deletion and TopGen’s neuron inser-
tion. One can see the later mutation as directly using Algorithm 4 with 𝑠𝑢𝑐𝑐𝑒𝑠𝑠𝑜𝑟𝑠𝑆𝑖𝑧𝑒
equal to 1. The neuron deletion mutation is quite simple – randomly select a hidden
neuron, then remove it from the network together with incoming and outgoings edges
of the neuron. The one and only trick to resolve is the case when the removed neu-
ron is the only one in that layer. In such a case, an edge is added for each neuron in
the previous layer to each neuron in the following layer, w.r.t. the removed neuron’s
layer; for illustration see Figure 4.6. Otherwise the generated network could splitted
to multiple disconnected components. This process is called neuron deletion. The ini-
tial population is constructed from the given initial theory by both of these mutations.
Thereafter, during search across populations, only TopGen’s rule extension mutation is
used.

4.5.2. Crossover

There are multiple ways to crossover two neural networks. REGENT’s crossover is
based on the idea of grouping densely connected neurons into one network and adjusting
neurons biases to preserve their original ∧ or ∨ meanings. Firstly, given two parents
networks, the algorithm traverses over hidden layers from input to output layer, for
each parent, and splits neurons to two sets 𝐴 and 𝐵. Probability that a given neuron 𝑛
will occur in 𝐴 is given by equation (4.6); where 𝑤𝑖𝑛 stands for weight between neuron
𝑖 and 𝑛. If a randomly generated number is withing given probability of 𝑛 belonging
to 𝐴, then 𝑛 is added to 𝐴, otherwise to 𝐵. Node sets 𝐴 and 𝐵 are shared for both
parent networks.

𝑝(𝑛 ∈ 𝐴) =

∑︀
𝑖∈𝐴
|𝑤𝑖𝑛|∑︀

𝑖∈𝐴
|𝑤𝑖𝑛|+

∑︀
𝑖∈𝐵
|𝑤𝑖𝑛|

(4.6)

From each set 𝐴 and 𝐵, one new network is constructed in following way. Network’s
structure is constructed from aset of neurons; input and output layers are taken from
parent networks and each neuron lies in layer which index is given by the longest path
to the input layer (the same principle as in KBANN network’s construction). For each
two neurons from the same parent, which shared an edge in the parental network, the
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4.6. Structure Learning with Selective Forgetting
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(d) 𝑆𝐵

Figure 4.7. Example of crossover of two parent networks 𝑃1 (figure 4.7a) and 𝑃2 (fig-
ure 4.7b) producing two offspring 𝑆𝐴 (figure 4.7c) and 𝑆𝐵 (figure 4.7d). Offspring’ in-
dices denote original set of neuron. Nodes were splitted so that 𝐴 = {𝑚1, 𝑚3, 𝑚4} and
𝐵 = {𝑝1, 𝑝2, 𝑚2, 𝑚5, 𝑚6}. Input, hidden and output neurons are displayed by green, blue
and red color respectively. Edges’ weights and biases are not shown.

edge, with the corresponding weight, is added to the newly constructed one; this holds
for input to hidden neuron edges, since the input and output layers are same for all
network during the REGENT run. The same holds for hidden to output and input to
output edges; in such cases, an edge’s weight is set to average of both edges’ weights
from both parents, taking zero weight in case that the edge is not presented in a parent.

Next step of construction of a offspring network lies in adjusting the biases. Output
neuron’s biases are computed as average over their values in both parents. In hidden
neurons, the process is little bit complicated, because the aim is to preserve the neuron
∧ or ∨ behavior. For each neuron, we remember its type (∧, ∨) at its network of
origin; classification to these types is discussed in section 4.4. For ∧ neuron and every
positively weighted incoming edge, which was not transfered from the parent network to
the offspring, its bias is decreased by the product of the weight and average activation
value of the edge’s source. In contrast, for ∨ neuron and every negatively weighted
incoming edge, which was not transfered from the parent network to the offspring, its
bias is increased by the product of the weight and average activation function value of
the edge’s source. Both these extension are driven by the idea of classification of ∧ and
∨ neuron that is based purely on incoming weights and bias.

Finally, between unconnected neurons of each two adjacent layers, edges with a small
initial weight are added. For illustration see Figure 4.7, where the crossover, given two
parental networks, produces two offspring networks.

4.6. Structure Learning with Selective Forgetting

So far, only constructive approaches were discussed. At the end of this chapter, a de-
structive algorithm is presented. It is called Structure Learning with Selective Forgetting
(SLSF) [81], based on the idea of forcing selected edges to have zero weights; so name

21



4. Structure learning approaches for propositional neural-symbolic integration

zeroing used in [25] sounds similar.
Even though the SLSF is a part of a little bit wider method called Structure Learning

with Forgetting (SLF) [81], but we decided to implement only SLSF to test a simple
regularization technique. The method extends the weight learning’s optimization cri-
terion by an expression corresponding to penalization of a weight, which are within a
certain distance to zero. The final optimization criterion is shown in equation (4.7),
where 𝐽 stands for sum of squared errors, 𝜖 is amount of forgetting and 𝜃 is the maximal
distance from zero within which the forgetting is applied. Derivation of such criterion
is approximated by equation (4.8), because of the occurrence of absolute value in the
extended criterion.

𝐽 ′ = 𝐽 + 𝜖
∑︁

|𝑤𝑖𝑗 |<𝜃

|𝑤𝑖𝑗 | (4.7)

𝜕𝐽 ′

𝜕𝑤𝑖𝑗
= 𝜕𝐽

𝜕𝑤𝑖𝑗
+ 𝜖sign(𝑤𝑖𝑗) (4.8)

22



5. Comparison of selected propositional
approaches

This chapter contains comparison of method described in chapter 4.

5.1. Datasets

Because there is no unified set of NSI benchmarks, set of datasets based on propositional
logical formulae was created. Iris dataset [96] could be used as in other works [33, 8],
but comparing neural network’s based method on a dataset with three classes, having
one of them linearly separable from the other two, is not very interesting.

Thus, 56 new datasets based of artificially created propositional logic formulae were
created. The rationale behind these datasets is based on the idea of comparing the meth-
ods on datasets with gradually increasing complexity to see results of each particular
method. Unfortunately, there is no standard measure of complexity of a propositional
formula. Thus, CNF score is proposed as a complexity indicator of a propositional
formula. CNF score is a number of clauses in CNF of a given formula. The rationale
behind this score comes from the fact that in a single-hidden-layer neural network,
the number of hidden nodes corresponds to the CNF score of a formula prescribing its
structure and thus such a network should theoretically be able to learn any formula
having such a score. Under this assumption, CNF score corresponds to the number of
hidden nodes of the resulting neural network. Besides CNF score, other criteria were
tested as well, but CNF score makes the most sense credible approach.

Each dataset composes of seven inputs (𝑎, 𝑏, 𝑐, 𝑑, 𝑒, 𝑓 , 𝑔), one output (𝑥) and a
formula 𝜑, from which 𝑥 was generated according to given inputs. Restrictions over 𝜑
were following:

∙ possible logical operators inside 𝜑: ∧, ∨, ¬ and ⊕
∙ ⊕ can be applied only to two arguments
∙ ¬ can be applied only to one argument
∙ ¬ can be used only within the first and second depth
∙ maximal depth of 𝜑 was 4
∙ given all 27 input possibilities, 𝜑 must produce at least 20% of each class (true,

false)
Given these restriction, 11000 𝜑, respective datasets, were generated. The generation

was done in bottom-up way, firstly generating all possible 𝜑 of depth 1 satisfying given
constrains, before continuing to formulae with higher depths. During this generation,
a formula, which truth table can be explained by some already generated formula, was
removed and not computed into the amount of 11000.

Thus, for each 𝜑 of the 11000, a CNF score was computed; for this purpose [97] was
used to transform a formula to its CNF. Thereafter, generated formulae were sorted
according its CNF score to 56 clusters. From each cluster single formula was randomly
selected. These 56 selected formulae correspond to our datasets.
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5. Comparison of selected propositional approaches

5.2. Methodology

Having only dataset of size 27 and comparing methods containing non-determinism,
e.g. randomly generation of weights, we decided to run 5-folds stratified crossvalidation
40 times with random folds creation for each run. Stratified splits represent a splitting
process that takes into account the requirement of similar distributions of classes in
both the whole dataset and each fold. Train and test MSE and accuracy were collected
from each run as well as time, number of added neurons and resulted networks.

5.3. Parameters

Since SLSF, KBANN, TopGen and REGENT need an initial theory, or its correspond-
ing network, three such inputs were created. For SLSF, three, six and nine hidden
layers, each layer having 15 neurons fully connected to adjacent layers, were created.
For the rest, three theories resulting in three, six and nine hidden layers networks, were
constructed. The thee, six and nine hidden layers networks were created from theo-
ries having 7, 14 and 18 rules respectively. Note that networks produced by theories
had edges even between neurons of non-adjacent layers; that is the main difference in
comparison with the network given to SLSF. Those algorithms will be in experiments
indexed by a number expressing the number of hidden layers of the corresponding initial
network.

Although modularity allows to use different activation functions than logistic sigmoid,
only that one was used in all cases. There are two simple reasons for this. Firstly, the
methods were originally developed with usage of sigmoids. Secondly, possible number
of activation functions is vast and evaluation would take a long time.

Note that each method learns a threshold classifier as well; it was done at the end of
every single weight learning phase. All methods were run with the same weight learning
setting. For detailed settings of parameters see appendix B.1.

5.4. Evaluation

Results are presented in order of descending average of crossvalidation accuracy over
given methods, because sorting them according to CNF score did not resulted in mono-
tone curves. Only results based on three layers initial networks are presented, because
accuracy curves possessed the same decay tendency in all cases. The minor difference
with the other initial networks is that their accuracy curves are shifted towards 0 a
little bit.

Although, one may come up with an idea that datasets generated by formulae where
⊕ is most frequent one, are the hardest ones, such results were observed; it is caused by
these methods or their initial structure. There are several formulae having multiple ⊕
in the left most (simplest) and the right most (hardest) end of the resulting graph, see
Figure 5.1. Also, there is a seemingly simple formula at the 39th place that is composed
from ∧, ∨ and ⊕ having only depth two; (𝑎 ∧ 𝑐) ∨ (𝑒⊕ 𝑓).

Train and crossvalidation accuracy, time requirements, train and crossvalidation MSE
are shown in Figures 5.1 to 5.5. On the simpler datasets, given by the selected order,
CasCor, DNC and REGENT are the most successful ones; in the second half of datasets,
CasCor does not produce as good results as the two firstly named. As easily seen on
train accuracy (Figure 5.2), both REGENT and DNC are overfitted.
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5.5. Conclusion

Interestingly, KBANN is superior to TopGen in wide number of cases. This may be
given by two facts. The first possible explanation is that this is caused by the split of a
dataset inside TopGen. This may cause that the network does not get sufficient number
of samples to be well trained. The second possible explanation is that the TopGen’s
idea is based on inaccurate assumptions.

Finally, SLSF does not produce any produce any accuracy results. Its capability of
producing high accuracy results degrades with harder datasets. It is probably given by
the fact that the given network was to big for this kind of dataset. When comparing
SLSF across initial networks, the one having three layers has highest accuracy over the
two other.

Figure 5.3 shows learning times of all methods. The fact that KBANN, SLF and
DNC are faster than the rest is quite predictable. The two firstly named depend only
on Backpropagation; the last one uses Backpropagation on different structures but
reusing already learned weights. The time superiority of TopGen in comparison with
REGENT is simply given by the fact that the later is a genetic algorithm. CasCor was
in most of the cases slower than REGENT; probably it took long time to evolve some
useful detectors within the network.

5.5. Conclusion
To sum up presented experiments, DNC and REGENT are favorites in most of the cases.
Superiority of REGENT over KBANN and TopGen was expected, but superiority of
TopGen over KBANN is little bit odd. Nonetheless, it could be caused by wrongly
assumptions on top of which TopGen arisen. Since datasets can be generated by a
formula containing negation, TopGen’s decreasing of false positive is the precise opposite
behavior with respect to the wanted goal.

DNC, REGENT and CasCor tend to overfit, but the last one probably rather re-
member given samples than create a generalization pattern; the two former ones are a
little bit better in the generalization. SLSF capability of learning a pattern vanishes
with harder formulae.

Order of CNF score, over given datasets, was not matched by decreasing accuracy
order of selected methods.
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Figure 5.1. Averages and variances of crossvalidation accuracy of selected methods on 56 logical
datasets.26
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Figure 5.2. Averages and variances of train accuracy of selected methods on 56 logical datasets.
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Figure 5.3. Averages and variances of training time of selected methods on 56 logical datasets.
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5.5. Conclusion
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Figure 5.4. Averages and variances of crossvalidation MSE of selected methods on 56 logical
datasets.
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Figure 5.5. Averages and variances of train MSE of selected methods on 56 logical datasets.
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6. Lifted Relational Neural Networks

This chapter describes Lifted Relation Neural Networks (LRNNs) [98, 3], which is a NSI
approach combining first-order logic and neural networks. LRNNs is described in this
thesis, because selected propositional structure learning techniques, which lifting is de-
signed in the following chapters, are experimentally evaluated with the usage of LRNNs
engine. Note that some definitions, examples and illustrations are taken from [3].

6.1. Main ideas of Lifted Relational Neural Networks
Let us firstly recall KBANN’s idea; not the construction process in details, but its idea.
KBANN tries to generalize a propositional pattern over a set of examples and an initial
theory. In order to achieve this goal, it constructs a network similar to an initial theory,
adding some possibilities for generalization, by adding some edges. LRNNs, although
it has arisen from different idea than propositional logic, it does similar process in
principle. It also aims to generalize a template, which is described in first-order logic.
Thus, expressivenesses and complexities of each approach differ a lot.

LRNNs arose on top of lifted models [99], which define patterns from which specific
(ground) models can be unfolded. These patterns are called templates. LRNNs combines
lifting and grounding to learn weights of weighted relational clauses by firstly creating a
set of ground neural networks, which is done by grounding (unfolding) a template over
a set of examples. Thereafter, clauses’ weights can be learned using gradient descent
method adjusted to the case of shared weights, since edges are shared among grounded
neural networks, and an edge may occur multiple times in one grounded network.

Novelty of the method lies in learning outputs values, e.g. classification problems, as
well as latent concepts simultaneously. This is caused by the weight learning process.
Since, LRNNs lives in the level of weighted clauses and each input example is given by
a set of grounded facts in first-order predicate logic, the grounding is done by creating
the least Herbrand model, which is very costly. For further reading, let us recall that we
restricted ourself to only non-recursive first-order function-free predicate logic without
negation.

6.2. Ground neural networks
A lifted relational neural network 𝒩 is a set of weighted definite clauses in form (𝑅𝑖, 𝑤𝑖),
where 𝑅𝑖 is a function-free definite clause and 𝑤𝑖 is a real number. Then, 𝒩 * is
used for denoting the set of clauses of 𝒩 without weights; 𝒩 * = {𝐶 : (𝐶, 𝑤) ∈ 𝒩}.
Given a LRNN 𝒩 , let ℋ be the least Herbrand model of 𝒩 *. We define grounding
of the LRNN 𝑁 as 𝒩 = {(ℎ𝜃 ⇐= 𝑏1𝜃 ∧ · · · ∧ 𝑏𝑘𝜃, 𝑤) : (ℎ ⇐= 𝑏1 ∧ · · · ∧ 𝑏𝑘, 𝑤) ∈
𝒩 and {ℎ𝜃, 𝑏1𝜃, . . . , 𝑏𝑘𝜃} ⊆ ℋ}. In other words, 𝒩 is set of ground definite clauses
which can be obtained by grounding rules from the LRNN and which are active in the
least Herbrand model of 𝒩 *.

Definition 6.1. Let 𝒩 be a LRNN, and let 𝒩 be its grounding. Let 𝑔∨, 𝑔∧ and 𝑔*
∧ be

families of multivariate functions with exactly one function for each number of argu-
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6.2. Ground neural networks

ments. The ground neural network of 𝒩 is a feed forward neural network constructed
as follows.
∙ For every ground atom ℎ occurring in 𝒩 , there is a neuron 𝐴ℎ, called atom neuron.

The activation functions of atom neurons are from the family 𝑔∨.
∙ For every ground fact (ℎ, 𝑤) ∈ 𝒩 , there is a neuron 𝐹(ℎ,𝑤), called fact neuron,

which has no input and always outputs a constant value.
∙ For every ground rule ℎ𝜃 ⇐= 𝑏1𝜃∧· · ·∧𝑏𝑘𝜃 ∈ 𝒩 *, there is a neuron 𝑅ℎ𝜃 ⇐= 𝑏1𝜃∧···∧𝑏𝑘𝜃,

called rule neuron. It has the atom neurons 𝐴𝑏1𝜃, . . . , 𝐴𝑏𝑘𝜃 as inputs, all with
weight 1. The activation functions of rule neurons are from the family 𝑔∧.
∙ For every rule (ℎ ⇐= 𝑏1 ∧ · · · ∧ 𝑏𝑘, 𝑤) ∈ 𝒩 and every ℎ𝜃 ∈ ℋ, there is a neuron

Aggℎ𝜃
(ℎ ⇐= 𝑏1∧···∧𝑏𝑘,𝑤), called aggregation neuron. Its inputs are all rule neurons

𝑅ℎ𝜃′ ⇐= 𝑏1𝜃′∧···∧𝑏𝑘𝜃′ where ℎ𝜃 = ℎ𝜃′ with all weights equal to 1. The activation
functions of the aggregation neurons are from the family 𝑔*

∧.
∙ Inputs of an atom neuron 𝐴ℎ𝜃 are the aggregation neurons Aggℎ𝜃

(ℎ ⇐= 𝑏1∧···∧𝑏𝑘,𝑤) and
fact neurons 𝐹(ℎ𝜃,𝑤). The weights of the input neurons are the respective 𝑤’s.

Example 6.1. Let us consider the following LRNN

𝒩 ={(foal(𝐴) ⇐= parent(𝐴, 𝑃 ) ∧ horse(𝑃 ), 𝑤𝑚), (foal(𝐴) ⇐= sibling(𝐴, 𝑆) ∧ horse(𝑆), 𝑤𝑛),
(horse(dakotta), 𝑤1), (horse(cheyenne), 𝑤2), (horse(aida), 𝑤3),
(parent(star, aida), 𝑤6), (parent(star, cheyenne), 𝑤5), (sibling(star, dakotta), 𝑤4)}.

The LRNN 𝒩 and its ground neural network are shown in Figure 6.1.
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Figure 6.1. Depiction of the rule-based template (left) of LRNN 𝒩 from Example 6.1, and its
corresponding ground neural network𝒩 (right), with colors denoting the predicate signatures,
rectangular nodes corresponding to ground and circular to lifted literals, respectively.

Example 6.2. Let show 𝜆 – 𝜅 notation within the LRNNs. The example above:

(foal(𝐴) ⇐= parent(𝐴, 𝑃 ) ∧ horse(𝑃 ), 𝑤𝑚)
(foal(𝐴) ⇐= sibling(𝐴, 𝑆) ∧ horse(𝑆), 𝑤𝑛)

is translated into 𝜆 – 𝜅 notation as

(𝜅foal(𝐴) ⇐= 𝜆foal1(𝐴), 𝑤𝑚)
(𝜅foal(𝐴) ⇐= 𝜆foal2(𝐴), 𝑤𝑛)

(𝜆foal1(𝐴) ⇐= 𝜅parent(𝐴, 𝑃 ) ∧ 𝜅horse(𝑃 ), 1)
(𝜆foal2(𝐴) ⇐= 𝜅sibling(𝐴, 𝑆) ∧ 𝜅horse(𝑆), 1)
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6. Lifted Relational Neural Networks

By looking at Examples 6.1 and 6.2, one can easily see that rule, aggregation and
atom neuron corresponds to 𝜆 rule body, 𝜆 predicate and 𝜅 predicate respectively. Such
observation is important, one predicate may be grounded multiple times in a ground
network.

We restrict LRNNs to have only one output, which is denoted by 𝜆𝑓 . Only 𝜅𝑓 /𝑎
predicates may imply 𝜆𝑓 , but this restriction is only for clearer notation through the
rest of the thesis. Because our aim is to search in the level of templates, the notation
of rules without corresponding weights is used in the following chapters.

6.3. Activation functions and weight learning algorithm
Since the main aim of this thesis is structure learning, this section contains only a
brief description of used activations functions and basic concept of its weight learning
algorithm. For more interested reader we recommend original source of LRNNs [3].

Behavior of grounded neural networks heavily depends on used families of activation
functions 𝑔∨, 𝑔∧ and 𝑔*

∧. Intuitively, based on the same idea as KBANN, having a 𝜆
(∧) rule, one would like to be this rule active if and only if all the inputs of literals from
the rule body of the rule have hight outputs. Based on the same idea, having and 𝜅
(∨) rule, one would like to be this rule active if at least one of its body literals output
is active.

In our experiments, we used identity for 𝜅 rules and sigmoid function for 𝜆 rules.
Current state of LRNNs engine allows to use different activation functions for different
predicates. This interferes with structure learning as well, but there was a lack of time
for experiments of those kinds, since we investigated other approaches to structure
learning.

The most important message of this section is, that only 𝜅 rules weights are learnt.
The process is based on gradient descent method capable of learning shared weights.
Shared weights arose from the fact that given a sample and a template, produced
grounded neural network my contain several atom neurons, corresponding to the same
𝜅 predicate. Weights of incoming edges from a 𝜅 predicate precisely correspond to its
weights in the weighted clauses level. Therefore, the weight is shared among all of the
𝜅’s atom neurons in samples.
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7. Predicate rule generation

Having defined LRNNs, in the previous chapter, we can move to the main contribution
of this thesis, which is described in the present and the following chapter. Speaking of
constructive methods described in Chapter 4, they are mostly presented as a combina-
tion of two parts – neuron generation and neuron insertion. These can be modularized
and taken into deep, independent study, done in separate ways. For example, Top-
Gen’s base neuron addition is a valid approach, since redundant antecedents of the
neuron vanish during weight learning phase. However, we aim for a modularized ap-
proach, because we believe that such a way can enhanced our knowledge by discovering
generalization of several tasks.

In the level of first-order predicate logic, the neuron generation transforms to a rule
generation task while the neuron insertion to a rule insertion. Note that rule insertion is
a subtask of a more general problem called template change strategy, which covers both
destructive and constructive approaches for possible template change. This chapter is
focused on rule generation, while Chapter 8 aims to elaborate on lifted rule insertion
and template change strategy techniques. In this chapter, firstly, several concepts of
transferring neuron generation from Chapter 4 to first-order predicate level are pre-
sented (sections 7.1 and 7.2); with zero arity for the beginning. Secondly, non-zero arity
extensions of former approaches are described. Thirdly, a constraints rule generation
is presented section 7.4. Finally, some interesting ideas from the machine learning are
presented as a possible base for another rule generators (section 7.5).

In this work, we restrict ourself to extending the template by adding only new non-
recursive rules without negation. The reasons for this have been presented earlier.

For clarity and prevention of misunderstanding, some LRNNs’ properties are changed
for simpler notation. Although each 𝜅 rule possesses a weight, this is not a concern of
this chapter, thus 𝜅 rules will be displayed without weights. Each 𝜆 and 𝜅 rule denoted
in this chapter will start with its corresponding symbol; so one can easily recognize the
rule’s type.

7.1. Base rules

Several of the propositional constructive approaches gradually add base neuron after
another; recall that it is a neuron having one incoming edge from every input node.
In order to lift base neurons, base rules are to be defined. But firstly, before defining
base rules, a decision whether base predicates are to be considered as 𝜆 or 𝜅 ones has
to be made. Since now, each time a base predicate is mentioned, it is a 𝜆 predicate
by default. This decision was backed by the aim of creating rather narrow LRNNs
networks. Categorization of base predicates to the other group is possible as well, but
resulting rules would be different.

Generally speaking, a set of base rules consist of one rule for each base predicate,
each one in form 𝜅/𝑎 ⇐= 𝑏𝑎𝑠𝑒𝑃𝑟𝑒𝑑𝑖𝑐𝑎𝑡𝑒/𝑏, where 𝜅 is a predicate of arity 𝑎 and 𝑏 is
𝑏𝑎𝑠𝑒𝑃𝑟𝑒𝑑𝑖𝑐𝑎𝑡𝑒’s arity; for sure, 𝑏𝑎𝑠𝑒𝑃𝑟𝑒𝑑𝑖𝑐𝑎𝑡𝑒 possesses different fresh variables in its
arguments. It is said that 𝜅, which is head of every rule in the set, is a base 𝜅. For
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7. Predicate rule generation

clarity see Algorithm 5. Note, that in this section is focused on generation of base rules
with kappa having zero arity; extension to non-zero arity is done in section 7.3.3.

Algorithm 5: Base rules generator
Input: Template 𝑡𝑒𝑚𝑝𝑙𝑎𝑡𝑒 and set of samples 𝑠𝑎𝑚𝑝𝑙𝑒𝑠
Output: A base rule set

1 𝑖← |𝑝𝑟𝑒𝑑(𝑡𝑒𝑚𝑝𝑙𝑎𝑡𝑒) ∪ 𝑝𝑟𝑒𝑑(𝑠𝑎𝑚𝑝𝑙𝑒𝑠)|
2 𝑟𝑢𝑙𝑒𝑠← ∅
3 for 𝑙 ∈ 𝑝𝑟𝑒𝑑(𝑠𝑎𝑚𝑝𝑙𝑒𝑠) do
4 𝑟𝑢𝑙𝑒← (𝜅𝑖 ⇐= 𝑙)
5 𝑟𝑢𝑙𝑒𝑠← {𝑟𝑢𝑙𝑒} ∪ 𝑟𝑢𝑙𝑒𝑠

6 return 𝑟𝑢𝑙𝑒𝑠

The rationale behind generating such a set of rules arises from the requirement of
having one layer of learnable weights, thus mimicking one neuron in the propositional
word. In order to use this rule, and since a ground network structure is composed of
alternating 𝜆 and 𝜅 layers, only a 𝜆 rule can be entailed by a 𝜅. Therefore, in order to
use values of such created rule set, its corresponding 𝜅 head is entailed by a 𝜆; e.g., the
following rule 𝜆 ⇐= 𝜅 must be used.

Example 7.1. Given the following set of samples

𝑆 = {{𝑚𝑎𝑙𝑒(𝑎𝑑𝑎𝑚), 𝑓𝑒𝑚𝑎𝑙𝑒(𝑑𝑖𝑎𝑛𝑎), 𝑠𝑖𝑏𝑙𝑖𝑛𝑔(𝑎𝑑𝑎𝑚, 𝑑𝑖𝑎𝑛𝑎)},
{𝑚𝑎𝑙𝑒(𝑗𝑜𝑠𝑒𝑝ℎ), 𝑚𝑎𝑙𝑒(𝑎𝑑𝑎𝑚), 𝑝𝑎𝑟𝑒𝑛𝑡(𝑗𝑜𝑠𝑒𝑝ℎ, 𝑎𝑑𝑎𝑚)}}

and a template having 𝜆𝑓 /0 and 𝜅𝑓 /0

𝑇 = {𝜆𝑓 ⇐= 𝜅𝑓}

the following set of base rules is created:

𝐵 = {𝜅2 ⇐= 𝑚𝑎𝑙𝑒(𝑋), 𝜅2 ⇐= 𝑓𝑒𝑚𝑎𝑙𝑒(𝑋),
𝜅2 ⇐= 𝑠𝑖𝑏𝑙𝑖𝑛𝑔(𝑋, 𝑌 ), 𝜅2 ⇐= 𝑝𝑎𝑟𝑒𝑛𝑡(𝑋, 𝑌 )}

When referring to generated base rule set by 𝜅𝑓 , following rules must be added:

𝜅𝑓 ⇐= 𝜆2

𝜆2 ⇐= 𝜅2

7.2. Cascade rules
Cascade Correlation gradually builds up a network by adding a new hidden neuron
having one incoming edge from each input and a hidden neuron. Lifting such approach
is straightforward as the previous case. Cascade rule is a base rule set extended by
adding 𝜅 ⇐= 𝜆𝑗 for every 𝜆𝑗 ∈ 𝑙𝑎𝑚𝑏𝑑𝑎𝑠(𝑡𝑒𝑚𝑝𝑙𝑎𝑡𝑒) such that 𝜆𝑗 ̸= 𝜆𝑓 , 𝑙𝑎𝑚𝑏𝑑𝑎𝑗 ;
having fresh variables in its arguments, where 𝜅 is the base 𝜅 of the extended rule set.
Such created rule set is called cascade rule set and the 𝜅 is called cascade 𝜅. For clarity,
see Algorithm 6.

The rationale behind this lifting is the same as in the previous case. Rules appended
to the base rule set mimic the cascade effect of a cascade neuron. Rule 𝜅𝑖 ⇐= 𝜆𝑓

cannot be added, since 𝜆𝑓 is the root predicate; a recursion would occur in the opposite
case.
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7.3. Non-zero arity rules

Algorithm 6: Cascade rules generator
Input: Template 𝑡𝑒𝑚𝑝𝑙𝑎𝑡𝑒 and set of samples 𝑠𝑎𝑚𝑝𝑙𝑒𝑠
Output: A cascade rule set

1 𝑖← |𝑝𝑟𝑒𝑑(𝑡𝑒𝑚𝑝𝑙𝑎𝑡𝑒) ∪ 𝑝𝑟𝑒𝑑(𝑠𝑎𝑚𝑝𝑙𝑒𝑠)|
2 𝑟𝑢𝑙𝑒𝑠← ∅
3 for 𝑙 ∈ (𝑝𝑟𝑒𝑑(𝑠𝑎𝑚𝑝𝑙𝑒𝑠) ∪ 𝑙𝑎𝑚𝑏𝑑𝑎𝑠(𝑡𝑒𝑚𝑝𝑙𝑎𝑡𝑒)) ∖ {𝜆𝑓} do
4 𝑟𝑢𝑙𝑒← (𝜅𝑖 ⇐= 𝑙)
5 𝑟𝑢𝑙𝑒𝑠← {𝑟𝑢𝑙𝑒} ∪ 𝑟𝑢𝑙𝑒𝑠

6 return 𝑟𝑢𝑙𝑒𝑠

Example 7.2. Given the following set of samples

𝑆 = {{}𝑚𝑎𝑙𝑒(𝑎𝑑𝑎𝑚), 𝑓𝑒𝑚𝑎𝑙𝑒(𝑑𝑖𝑎𝑛𝑎), 𝑠𝑖𝑏𝑙𝑖𝑛𝑔(𝑎𝑑𝑎𝑚, 𝑑𝑖𝑎𝑛𝑎)},
{𝑚𝑎𝑙𝑒(𝑗𝑜𝑠𝑒𝑝ℎ), 𝑚𝑎𝑙𝑒(𝑎𝑑𝑎𝑚), 𝑝𝑎𝑟𝑒𝑛𝑡(𝑗𝑜𝑠𝑒𝑝ℎ, 𝑎𝑑𝑎𝑚)}}

and a template

𝑇 = {𝜆𝑓 ⇐= 𝜅𝑓 , 𝜅𝑓 ⇐= 𝜆2, 𝜆2 ⇐= 𝜅2, 𝜅2 ⇐= 𝑚𝑎𝑙𝑒(𝑋),
𝜅2 ⇐= 𝑓𝑒𝑚𝑎𝑙𝑒(𝑋), 𝜅2 ⇐= 𝑠𝑖𝑏𝑙𝑖𝑛𝑔(𝑋, 𝑌 ), 𝜅2 ⇐= 𝑝𝑎𝑟𝑒𝑛𝑡(𝑋, 𝑌 )}

the following cascade rule set is created:

𝐶 = {𝜅4 ⇐= 𝑚𝑎𝑙𝑒(𝑋), 𝜅4 ⇐= 𝑓𝑒𝑚𝑎𝑙𝑒(𝑋), 𝜅4 ⇐= 𝑠𝑖𝑏𝑙𝑖𝑛𝑔(𝑋, 𝑌 ),
𝜅4 ⇐= 𝑝𝑎𝑟𝑒𝑛𝑡(𝑋, 𝑌 ), 𝜅4 ⇐= 𝜆2}

When referring to generated base rule set by 𝜅𝑓 , following rules must be added:

𝜅𝑓 ⇐= 𝜆4

𝜆4 ⇐= 𝜅4

7.3. Non-zero arity rules
Previous attempts are straightforward lifting of propositional neurons creation to first-
order predicate logic level. This section is focused on creating predicate rules having
a non-zero arity predicate in head. A question of order, a sequence , of variables in
the rule head and the whole rule is a new task to be taken care of. Firstly, variables’
ordering approaches are discussed. Thereafter an extension of base and cascade rules
to non-zero arity is presented.

Before further investigation, let us define several concepts for easier manipulation
with variables in a rule. Although a rule is a set of literals, each one having arbitrary
variables in its arguments, the rule is here redefined as a sequence of literals of order
given by writing of the particular rule or rule’s body. This section is heavily based on
operation of variables within the rule, thus we define a variable sequence to be composed
of a ordered set, of variables occurring in the literals sequence according to the order of
appearance. Literals sequence can be either given by writing of a whole rule, starting
with head, or a rule’s body only.

Example 7.3. Let us have the following rule: 𝑓𝑎𝑚𝑖𝑙𝑖𝑎𝑟(𝑋, 𝑍) ⇐= 𝑓𝑎𝑚𝑖𝑙𝑖𝑎𝑟(𝑋, 𝑌 )∧
𝑓𝑎𝑚𝑖𝑙𝑖𝑎𝑟(𝑋, 𝑍). Its sequence is 𝑋, 𝑍, 𝑌 while rule’s body sequence is 𝑋, 𝑌, 𝑍.
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7.3.1. Rule head’s variable

Let us firstly focus on the meaning, not the order, of arities of 𝜆 and 𝜅 predicates. For
example, having a rule 𝜆(𝑋) ⇐= 𝜅(𝑋, 𝑌 ) is useful, because it holds in the case that
𝑋 is represent a object, which is in relation given by 𝜅. In the reversed order of arities,
e.g. 𝜆(𝑋, 𝑌 ) ⇐= 𝜅(𝑋), is a malformed case, since 𝑋 must be in relation given by the
𝜅, but there are no restriction on 𝑌 variable. From computation point of view, such
a rule is expensive, because 𝑌 may bind to everything in the domain. Also, it does
not express any interesting property of 𝑌 . Supported by these facts, following idea is
proposed – in a rule head, only variables, occurring in the body, may appear. The most
straightforward way is to take rule’s body variables repeatedly. Others constraints may
be added, for instance rule’s head arity must be equal or lower to number of variables
occurring in its body.

7.3.2. Variable order

Firstly, let us focus on variable ordering within a rule body. Let have a following rule
with more than one literal in its body: 𝜆 ⇐= 𝑚𝑎𝑙𝑒(𝑊 ) ∧ 𝑠𝑖𝑏𝑙𝑖𝑛𝑔(𝑋, 𝑌 ) ∧ 𝑓𝑒𝑚𝑎𝑙𝑒(𝑍).
Such a rule is very general, more general than the following 𝜆 ⇐= 𝑚𝑎𝑙𝑒(𝑋) ∧
𝑠𝑖𝑏𝑙𝑖𝑛𝑔(𝑋, 𝑌 ) ∧ 𝑓𝑒𝑚𝑎𝑙𝑒(𝑌 ). The later states that there 𝜆 holds only if there is a
brother and a sister. The former holds whenever there is at least one male, one female
and something that is in sibling relationship.

The problem here lies in the independent literals within the rule body. The later is
more specific and more suitable for our case. Thus, the main idea of this example is
motivation of creating only rules that have dependent literals within a rule body.

To tackle this problem we propose chaining body variable order within a rule’s body.
Having a sequence of literals, the chaining body is defined as follow: each literal pos-
sesses arguments order such that the first argument is the same variable as the last
argument of the previous non-zero arity literal in the sequence; rest of the arguments
are filled with fresh variables not occurring in any other literal of the sequence. The
term of subsequence is used for a sequence of a continuous ordered list.

Example 7.4. Given the following rule body

ℎ𝑢𝑚𝑎𝑛/1 ∧ 𝑤𝑜𝑟𝑘/0 ∧ 𝑠𝑎𝑙𝑎𝑟𝑦/3 ∧𝑚𝑜𝑛𝑡ℎ/1

the following variable order will be produced by chaining body:

ℎ𝑢𝑚𝑎𝑛(𝑋) ∧ 𝑤𝑜𝑟𝑘 ∧ 𝑠𝑎𝑙𝑎𝑟𝑦(𝑋, 𝑌, 𝑍) ∧𝑚𝑜𝑛𝑡ℎ(𝑍)

This approach does not solve every problem. For example having known that argu-
ments of 𝑠𝑎𝑙𝑎𝑟𝑦/3 represent who, how many and in which month one get a salary, rule
in form ℎ𝑢𝑚𝑎𝑛(𝑋)∧𝑤𝑜𝑟𝑘∧𝑠𝑎𝑙𝑎𝑟𝑦(𝑋, 𝑌, 𝑍)∧ℎ𝑢𝑚𝑎𝑛(𝑍) should not bind a single time,
unless there is an entity being a human and a month at once. Therefore we, making
a body literals dependent is domain dependent. The most straightforward way to deal
with this, is to firstly find possible dependencies between literals withing train samples,
thereafter use this knowledge to make only some variable ordering. In fact, this is the
idea of least general generalization; more on this in section 7.5. On the other hand,
there may be vast number of such possibilities.

Secondly, the question of variable ordering in rule head arises. It is the same problem
for 𝜆 and 𝜅 rule, the only difference is that the former possesses only one literal in its
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body. Thus description of our proposed approach will be given for 𝜅 rule, the second
one is a special case.

The simplest variable order in a rule head, beside a random one, is to take set of
body variables sequence. In case that the sequence’s length is greater or equal to the
body head’s arity, a subsequence of length head’s arity is selected as head variable
order; otherwise the sequence is used multiple times till the length of the head’s arity
is achieved. This head’s variable order will be referred as chain root order.

Example 7.5. Given the following rule with head only in the Prolog-like description

𝜅/2 ⇐= 𝑠𝑎𝑙𝑎𝑟𝑦(𝑋, 𝑌, 𝑍)

the following variable order for head predicate will be created by chain root order:

𝜅(𝑋, 𝑌 )

Another, a computationally expensive, extension of the previous is creation of a new
rule for each variation of the body’s variables set of size equal the head’s arity; in case
that head’s arity is bigger than the cardinality of the set, the set is filled with fresh
variables to size of the head’s arity. This rule generation will be referred as variation
order.

Example 7.6. Given the following rule with head only in Prolog-like description

𝜅/2 ⇐= 𝑠𝑎𝑙𝑎𝑟𝑦(𝑋, 𝑌, 𝑍)

following rules with a variable order of the head predicate will be created by the
variation order:

𝜅(𝑋, 𝑌 ) ⇐= 𝑠𝑎𝑙𝑎𝑟𝑦(𝑋, 𝑌, 𝑍)
𝜅(𝑋, 𝑍) ⇐= 𝑠𝑎𝑙𝑎𝑟𝑦(𝑋, 𝑌, 𝑍)
𝜅(𝑌, 𝑋) ⇐= 𝑠𝑎𝑙𝑎𝑟𝑦(𝑋, 𝑌, 𝑍)
𝜅(𝑌, 𝑍) ⇐= 𝑠𝑎𝑙𝑎𝑟𝑦(𝑋, 𝑌, 𝑍)
𝜅(𝑍, 𝑋) ⇐= 𝑠𝑎𝑙𝑎𝑟𝑦(𝑋, 𝑌, 𝑍)
𝜅(𝑍, 𝑌 ) ⇐= 𝑠𝑎𝑙𝑎𝑟𝑦(𝑋, 𝑌, 𝑍)

As one can easily see, the blow up of variations order is substantial. Thus we propose
a relaxation that combines both variation and chain root order called sliding window
order. Sliding window order generates a set of rules, such that for each subsequence of
a sequence used in rule chain order, having the same length as head’s arity, a new rule
having such head variable order is generated; in case that the sequence is smaller than
the head’s arity, it is extended by itself till the its length is long enough.

Example 7.7. Given the following rule with head only in Prolog-like description

𝜅/2 ⇐= 𝑠𝑎𝑙𝑎𝑟𝑦(𝑋, 𝑌, 𝑍)

following rules with variable order for head predicate will be created by sliding window
order:

𝜅(𝑋, 𝑌 ) ⇐= 𝑠𝑎𝑙𝑎𝑟𝑦(𝑋, 𝑌, 𝑍)
𝜅(𝑌, 𝑍) ⇐= 𝑠𝑎𝑙𝑎𝑟𝑦(𝑋, 𝑌, 𝑍)

Since each 𝜆 rule can have only one definition, chain root order is used, but others
are possible as well; more on this in section 7.5.
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7. Predicate rule generation

7.3.3. Base and cascade rule with non-zero arity
As described in the previous subsection, generation of non-zero arity rules can be done
in multiple ways. Now, an extension of base and cascade rules to non-zero arity level
is to be presented. We propose an extension for this case, which arises from the task
of appending base or cascade rule to an existing 𝜅 one. The proposed extension will be
simulated for a base rule.

Given a 𝜅𝑎 with arity 𝑎 a 𝜅𝑏 of the arity 𝑎 is created. Thereafter for each base
predicate 𝑝 of arity 𝑚 a set of rules of form 𝜅𝑏/𝑎 ⇐= 𝑝/𝑚 according to a variable
ordering strategy is created. The only problem, which may occur here, is the creation of
𝜆𝑏 implied by 𝜅𝑎𝑏

for each created kappas with arity 𝑎𝑏. Here, sliding window, variation
or root chain order can be used. For illustration see Example 7.8.

Example 7.8. Given the 𝜅𝑎/1 and the following set of samples

𝑆 = {{𝑚𝑎𝑙𝑒(𝑎𝑑𝑎𝑚), 𝑓𝑒𝑚𝑎𝑙𝑒(𝑑𝑖𝑎𝑛𝑎), 𝑠𝑖𝑏𝑙𝑖𝑛𝑔(𝑎𝑑𝑎𝑚, 𝑑𝑖𝑎𝑛𝑎)},
{𝑚𝑎𝑙𝑒(𝑗𝑜𝑠𝑒𝑝ℎ), 𝑚𝑎𝑙𝑒(𝑎𝑑𝑎𝑚), 𝑝𝑎𝑟𝑒𝑛𝑡(𝑗𝑜𝑠𝑒𝑝ℎ, 𝑎𝑑𝑎𝑚)}}

the following set of base rules with non-zero arity and sliding window order will be
created:

𝜅𝑏(𝑋) ⇐= 𝑚𝑎𝑙𝑒(𝑋)
𝜅𝑏(𝑋) ⇐= 𝑓𝑒𝑚𝑎𝑙𝑒(𝑋)

𝜅𝑏(𝑋) ⇐= 𝑠𝑖𝑏𝑙𝑖𝑛𝑔(𝑋, 𝑌 )
𝜅𝑏(𝑌 ) ⇐= 𝑠𝑖𝑏𝑙𝑖𝑛𝑔(𝑋, 𝑌 )
𝜅𝑏(𝑋) ⇐= 𝑝𝑎𝑟𝑒𝑛𝑡(𝑋, 𝑌 )
𝜅𝑏(𝑌 ) ⇐= 𝑝𝑎𝑟𝑒𝑛𝑡(𝑋, 𝑌 )

Of course that in order to use this base 𝜅𝑏, an rule, entailing this 𝜅𝑏, must be created,
for example:

𝜆𝑏(𝑋) ⇐= 𝜅𝑏(𝑋)

Extension of cascade rules to non-zero arity is done in the same way.

7.4. Random rule generator with constraints
Beside generation of base 𝜅, other approaches are valid. One of these is generation of a
random rule satisfying set of constraints. Let us start with description of constraints,
then continue with randomized rule generation.

There are several parameters that may be useful while generating a rule, these are:
∙ 𝜆 rule

– body length
∙ 𝜅 rule

– number of definitions
∙ common for 𝜆 and 𝜅 rules

– head’s arity
– variable order
– longest path to terminal rule
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7.5. Predicate rule generation extensions

Firstly, start from the top of this list to describe the constraints. As we known, a
𝜆 rule can possesses only one definition, but its body length can vary. To this part,
constraints based on the minimal and maximal body length are given, reducing the
space of possible rules. In contrast, 𝜅 rule can be defined multiple times, but each time
the rule body must contains exactly one literal. Thus constrains on the minimal and
maximal number of 𝜅 definitions arise.

For both 𝜆 and 𝜅 rules, constraints over head’s arity, variable order and longest path
to terminal rule are possible. The head’s arity can be constrained from both sides –
minimal and maximal. There can be constraints on variable ordering, but instead of
this, one of the following strategies is used: chaining body, sliding window, chain root
and random assignment of variables to arguments. The longest path to terminal rule
is constrained only by an upper bound. As in the previous case, the arity of a rule’s
head predicate can be constrained by a bottom and an upper bound.

Generating new rules may be done in different ways, for example 𝜅 rule may be
added, 𝜆 rule body may be extended, both new 𝜆 and 𝜅 predicate may be inserted.
Our random generator, displayed in Algorithm 7, is capable of all of these; note that the
pseudocode does not display all constraints parameters for the sake of the space. The
generator firstly decides whether to extend 𝜆 or 𝜅 predicate and selects an appropriate
one (lines 1 to 4). Then, either new predicate is created or not. When decision is
made not to create new predicate, new rule is generated for the selected predicate
(line 13). The rule method 𝑟𝑎𝑛𝑑𝑜𝑚𝐵𝑜𝑑𝑦(𝑝𝑟𝑒𝑑𝑖𝑐𝑎𝑡𝑒, 𝑡𝑒𝑚𝑝𝑙𝑎𝑡𝑒, 𝑠𝑎𝑚𝑝𝑙𝑒𝑠) constructs a
new 𝜅 rule, in case that 𝑝𝑟𝑒𝑑𝑖𝑐𝑎𝑡𝑒 is of the same type; otherwise it extends the 𝜆 rule
with a head 𝑝𝑟𝑒𝑑𝑖𝑐𝑎𝑡𝑒. Method 𝑟𝑎𝑛𝑑𝑜𝑚𝐵𝑜𝑑𝑦𝑊𝑖𝑡ℎ𝑃𝑟𝑒𝑑𝑖𝑐𝑎𝑡𝑒 does the same thing, only
forcing newly created predicate to be inside the body.

When a decision is made that a predicate should be created, the algorithm creates
new 𝜅 or 𝜆 predicate; always the created predicate is of the other type than the selected
predicate ℎ𝑒𝑎𝑑. Thereafter, new rule is created for the newly created predicate and new
rule is created for the firstly selected predicate (lines 9 and 11). The similarly named
methods work as in the previous case when no predicate is created.

While extending or creating new rules, several constraints must hold. When creating
a 𝜆 rule, the old one has to be removed from the template since only one 𝜆 definition
can be in the template. Contrary to that, if given 𝜅 has more definition than the
corresponding upper bound, randomly chosen old rule of the given 𝜅 is removed from
the template. When generating a fresh new predicate, it creates a predicate that does
not occur in the template nor in the base predicates with arity within the given bounds.
When generating new body rule, only 𝜅 predicates can be inserted into a 𝜆 body;
contrary, 𝜅 body can contains only 𝜆 and base predicates. For every predicate given to
a newly created body, two constraints must hold. Firstly, the maximal path to terminal
predicate, from that rule, summed with the maximal path to head of the body, does
not exceed the longest path constraint’s bound. Secondly, the rule body predicate must
preserve the non-recursive property of the template.

7.5. Predicate rule generation extensions

So far, several possibilities of predicate rule generation have been presented, but this
was mainly inspired by lifting the propositional approaches. Since the field of relation
learning is vast, only several extensions are mentioned in this section. The first such
extension was proposed in section 7.4. Instead of approaching to a base or cascade rule
generation as to a totally different processes to each other, they have in common the
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7. Predicate rule generation

Algorithm 7: Random rule generator
Input: Template 𝑡𝑒𝑚𝑝𝑙𝑎𝑡𝑒, set of samples 𝑠𝑎𝑚𝑝𝑙𝑒𝑠, probability of predicate

creation 𝑝𝑐, probability of 𝜆 change 𝑝𝜆

Output: A set of generated rules
1 if 𝑖𝑠𝑃𝑟𝑜𝑏𝑎𝑏𝑙𝑒(𝑝𝜆) then
2 ℎ𝑒𝑎𝑑← 𝑙𝑎𝑚𝑏𝑑𝑎𝑠(𝑡𝑒𝑚𝑝𝑙𝑎𝑡𝑒)
3 else
4 ℎ𝑒𝑎𝑑← 𝑘𝑎𝑝𝑝𝑎𝑠(𝑡𝑒𝑚𝑝𝑙𝑎𝑡𝑒)
5 𝑟𝑢𝑙𝑒𝑠← ∅
6 if 𝑖𝑠𝑃𝑟𝑜𝑏𝑎𝑏𝑙𝑒(𝑝𝑐) then
7 𝑛𝑒𝑤𝑃𝑟𝑒𝑑𝑖𝑐𝑎𝑡𝑒← 𝑟𝑎𝑛𝑑𝑜𝑚𝐴𝑟𝑖𝑡𝑦𝐹𝑟𝑒𝑠ℎ𝑃𝑟𝑒𝑑𝑖𝑐𝑎𝑡𝑒(ℎ𝑒𝑎𝑑, 𝑡𝑒𝑚𝑝𝑙𝑎𝑡𝑒, 𝑠𝑎𝑚𝑝𝑙𝑒𝑠)
8 𝑏𝑜𝑑𝑦𝑖 ← 𝑟𝑎𝑛𝑑𝑜𝑚𝐵𝑜𝑑𝑦(𝑛𝑒𝑤𝑃𝑟𝑒𝑑𝑖𝑐𝑎𝑡𝑒, 𝑡𝑒𝑚𝑝𝑙𝑎𝑡𝑒, 𝑠𝑎𝑚𝑝𝑙𝑒𝑠)
9 𝑟𝑢𝑙𝑒𝑠← {𝑟𝑎𝑛𝑑𝑜𝑚𝑅𝑢𝑙𝑒(ℎ𝑒𝑎𝑑, 𝑏𝑜𝑑𝑦𝑖)} ∪ 𝑟𝑢𝑙𝑒𝑠

10 𝑏𝑜𝑑𝑦ℎ ← 𝑟𝑎𝑛𝑑𝑜𝑚𝐵𝑜𝑑𝑦𝑊𝑖𝑡ℎ𝑃𝑟𝑒𝑑𝑖𝑐𝑎𝑡𝑒(ℎ𝑒𝑎𝑑, 𝑛𝑒𝑤𝑃𝑟𝑒𝑑𝑖𝑐𝑎𝑡𝑒, 𝑡𝑒𝑚𝑝𝑙𝑎𝑡𝑒, 𝑠𝑎𝑚𝑝𝑙𝑒𝑠)
11 𝑟𝑢𝑙𝑒𝑠← {𝑟𝑎𝑛𝑑𝑜𝑚𝑅𝑢𝑙𝑒(ℎ𝑒𝑎𝑑, 𝑏𝑜𝑑𝑦ℎ)} ∪ 𝑟𝑢𝑙𝑒𝑠

12 else
13 𝑏𝑜𝑑𝑦ℎ ← 𝑟𝑎𝑛𝑑𝑜𝑚𝐵𝑜𝑑𝑦(𝑡𝑒𝑚𝑝𝑙𝑎𝑡𝑒, 𝑠𝑎𝑚𝑝𝑙𝑒𝑠)
14 𝑟𝑢𝑙𝑒𝑠← {𝑟𝑎𝑛𝑑𝑜𝑚𝑅𝑢𝑙𝑒(ℎ𝑒𝑎𝑑, 𝑏𝑜𝑑𝑦ℎ)} ∪ 𝑟𝑢𝑙𝑒𝑠

15 return 𝑟𝑢𝑙𝑒𝑠

rule generation property. A rule generator may have multiple definitions.
Constructing a template could be based on frequent pattern, e.g. association rules, in

first-order level. In fact, such an approach is very intuitive – instead of building template
by random rule generation, it can be used in a semi-supervised way. Approaches based
on this were already proposed, for example in KBANN [9], aimed to escape from local
minimum during the weight learning phase. But they used insertion of rules provided
by experts. Similar approach, while during the search of neural-symbolic cycle, was
proposed in INSS [15], also with the need of an expert, who examined the extracted
rules. Novelty of our proposition is automatically mining of such patterns (rules). This
can be done by several exiting methods, for example Warmer [100], Farmer [101] or
others [102, 103].

In section 7.3, variable ordering techniques were discussed. A variable order within
a rule is the rule’s property. Thus, one can search for frequent rules together with
corresponding variable order within the samples, or even within the grounded neural
networks (the least Herbrand model). For such approaches, a least general generaliza-
tion based method may be used, for instance Golem [104].

In fact, in search of frequent patterns, aimed at variable order, one could run LRNNs
with different variable order of given rule and then count support, which is in fact given
by sizes of generated grounded networks. Of course, this brings computational blow
up, because of possible variable orders. Thus one may find useful some other methods
in search of such rules.

Another relational learning techniques can be used for creation the initial template
[105, 106]. The aim here is not to run a relation learner to full depth and use its outputs
as an input to LRNNs. We believe that a small portion of found theory by some of
these approaches, could serve as initial template for constructive structure learning
approaches.

Leaving the field of automatically derived rules, a grammar describing which rules
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can be generated, is also a valid approach. Naturally that such grammar would need
an expert, who would create it for each domain. On the other hand, the search space
of possible rules could be meaningfully pruned; for example, grammar constraining
isomorphism could prevent generation of a huge number of meaningless rules in some
domains.

In fact, we can look at the grammar approach from another perspective. Instead of
using an expensive expert and convincing him that a domain specific grammar from
his field is really important, numerous runs with different grammars, corresponding to
different properties, may be tried. Upon results from such runs, one may find useful
properties of the data.
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8. Transfer of selected structure learning
approaches to first-order logic

In the previous chapter was shown that lifting of propositional structure learning ap-
proaches to first-order predicate logic can be seen as changing the template, and that
this can be separated into two independently investigated areas. This chapter investi-
gates lifted template changing strategies. The strategies can be divided into separate
categories, e.g. to a rule insertion part which corresponds to node insertion in the
propositional techniques.

Note that incorporating of KBANN to the first-order predicate case would result
in something similar to LRNNs, thus it it is not investigated here. Both of these
approaches arose from different ideas.

8.1. Local search

The most straightforward constructive method for structure learning within first-order
level is local search over the template. Evaluation of a template is quite simple – its
accuracy after grounding and weight learning. The one and only thing that is to be
defined is successors generation. For this purpose, the proposed random rule generator
from section 7.4. Other possibilities are using false decrease (section 8.4.2) or rule
deletion (section 8.5.1).

This approach uses LRNNs engine as a black-box and the whole process of learning
could be stalled because of repeatedly grounding and a random, useless, rule. Our aim
here is threefold: to reduce computational demands, add useful rules and use learnt
neuron insertion strategies from Chapter 4. Computational demands can be reduced
by adding only rules that do not change structures of already ground neural networks.
For example, adding a fact or a rule producing already used predicate in another rule’s
body from the template are such cases. This idea is behind sections 8.2 and 8.3.

8.2. Lifted Dynamic Node Creation

Lifting DNC method is quite straightforward. The idea is to gradually construct flat
theory (template), so the DNC’s one-hidden-layer property is preserved. The flat tem-
plate is constructed gradually by the following process: for given 𝜅𝑓 /𝑎 a set of base
rules entailed by fresh 𝜅𝑖/𝑎 is created; thereafter the set is added to the template. To
finalize this template’s extension, 𝜅𝑖/𝑎 must be entailed by 𝜅𝑓 /𝑎; this is done via fresh
predicate 𝜆𝑖/𝑎 and two rules: 𝜆𝑖/𝑎 ⇐= 𝜅𝑖/𝑎 and 𝜅𝑓 /𝑎 ⇐= 𝜆𝑖/𝑎, both having the
same variable order in rule’s body and head. Such constructed template is ensured
to have two layers of learnable weights. Pseudocode for this algorithm is not shown
here, because it is the same algorithm as Algorithm 1. The main difference with the
former is that the number of added predicates is compared to the given bound instead
of the number of added neurons. In fact, in the pseudocode, rule and template would
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be written instead of neuron and network structure respectively; informally speaking,
this holds for every lifted algorithm.

Example 8.1. Given the following set of samples

𝑆 = {{𝑚𝑎𝑙𝑒(𝑎𝑑𝑎𝑚), 𝑓𝑒𝑚𝑎𝑙𝑒(𝑑𝑖𝑎𝑛𝑎), 𝑠𝑖𝑏𝑙𝑖𝑛𝑔(𝑎𝑑𝑎𝑚, 𝑑𝑖𝑎𝑛𝑎), ℎ𝑎𝑝𝑝𝑦},
{𝑚𝑎𝑙𝑒(𝑗𝑜𝑠𝑒𝑝ℎ), 𝑚𝑎𝑙𝑒(𝑎𝑑𝑎𝑚), 𝑝𝑎𝑟𝑒𝑛𝑡(𝑗𝑜𝑠𝑒𝑝ℎ, 𝑎𝑑𝑎𝑚)}}

and a template

𝑇 = {𝜆𝑓 ⇐= 𝜅𝑓}

the resulting template after first rule addition would look like:

𝐵 = {𝜅𝑓 ⇐= 𝜆2, 𝜆2 ⇐= 𝜅2, 𝜅2 ⇐= ℎ𝑎𝑝𝑝𝑦,

𝜅2 ⇐= 𝑚𝑎𝑙𝑒(𝑋), 𝜅2 ⇐= 𝑓𝑒𝑚𝑎𝑙𝑒(𝑋),
𝜅2 ⇐= 𝑠𝑖𝑏𝑙𝑖𝑛𝑔(𝑋, 𝑌 ), 𝜅2 ⇐= 𝑝𝑎𝑟𝑒𝑛𝑡(𝑋, 𝑌 )}

Note that having 𝜅𝑓 /𝑎 with 𝑎 > 0, usage of sliding window, chain root or another
variable ordering would be necessary.

8.3. Lifted Cascade Correlation

The incorporation of Cascade Correlation to the first-order predicate level is also
straightforward, as in the previous case. The main idea of gradually constructing hier-
archical structure is preserved together with the insertion of a predicate that is firstly
learnt so its output correlates to outputs; this is followed by learning only the output
weights.

The aim is to create a cascade architecture within the template, such that there
is a at least one learnable edge between the newly added candidate predicate, which is
lifted candidate neuron from propositional level, and each base predicate and previously
added predicates. As one can easily see, having non-learneable edges does not allow
weight learning process, thus Cascade Correlation would have no effect.

Pseudocode for the method is not presented, because it is very similar to Algorithm
2. The method firstly creates an initial template by a using the cascade rule generator.
Given 𝜆𝑓 and 𝜅𝑓 /𝑎, the initial template is constructed by generating cascade rule set
entailed by 𝜅𝑓 /𝑎. Rule 𝜆𝑓 /0 ⇐= 𝜅𝑓 /𝑎 is added.

Example 8.2. Given the following set of samples

𝑆 = {{𝑚𝑎𝑙𝑒(𝑎𝑑𝑎𝑚), 𝑓𝑒𝑚𝑎𝑙𝑒(𝑑𝑖𝑎𝑛𝑎), 𝑠𝑖𝑏𝑙𝑖𝑛𝑔(𝑎𝑑𝑎𝑚, 𝑑𝑖𝑎𝑛𝑎), ℎ𝑎𝑝𝑝𝑦},
{𝑚𝑎𝑙𝑒(𝑗𝑜𝑠𝑒𝑝ℎ), 𝑚𝑎𝑙𝑒(𝑎𝑑𝑎𝑚), 𝑝𝑎𝑟𝑒𝑛𝑡(𝑗𝑜𝑠𝑒𝑝ℎ, 𝑎𝑑𝑎𝑚)}}

and final predicates 𝜆𝑓 /0, 𝜅𝑓 /1, the initial template, produced with usage of sliding
window order, follows:

𝑇𝑖𝑛𝑖𝑡 = {𝜆𝑓 ⇐= 𝜅𝑓 (𝑋), 𝜅𝑓 (𝑋) ⇐= 𝜆2(𝑋), 𝜆2(𝑋) ⇐= 𝜅2(𝑋), 𝜅2(𝑋) ⇐= ℎ𝑎𝑝𝑝𝑦,

𝜅2(𝑋) ⇐= 𝑚𝑎𝑙𝑒(𝑋), 𝜅2(𝑋) ⇐= 𝑓𝑒𝑚𝑎𝑙𝑒(𝑋), 𝜅2(𝑋) ⇐= 𝑠𝑖𝑏𝑙𝑖𝑛𝑔(𝑋, 𝑌 ),
𝜅2(𝑌 ) ⇐= 𝑠𝑖𝑏𝑙𝑖𝑛𝑔(𝑋, 𝑌 ), 𝜅2 ⇐= 𝑝𝑎𝑟𝑒𝑛𝑡(𝑋, 𝑌 ), 𝜅2(𝑌 ) ⇐= 𝑝𝑎𝑟𝑒𝑛𝑡(𝑋, 𝑌 )}
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Secondly, when extending a template with 𝜅𝑓 /𝑎, a fresh new 𝜅𝑖/𝑎 and a cascade rule
set entailed by 𝜅𝑖/𝑎 are created. Then, the first layer of learnable weights, w.r.t. the
candidate predicate 𝜅𝑖/𝑎, is learnt in order to maximize correlation of the candidate
predicate w.r.t. outputs. After weights are learnt, the template is extended by the
generated cascade rule set, 𝜅𝑓 /𝑎 ⇐= 𝜆𝑖/𝑎 and 𝜆𝑖/𝑎 ⇐= 𝜅𝑖/𝑎, both having the same
variable order in rule’s head and body.

Example 8.3. Given 𝑆 and 𝑇𝑖𝑛𝑖𝑡 from Example 8.2 and using slide window order, the
template after adding another cascade predicate, is extended by:

𝑇𝑒 = {𝜅𝑓 (𝑋) ⇐= 𝜆4(𝑋), 𝜆4(𝑋) ⇐= 𝜅4(𝑋), 𝜅4(𝑋) ⇐= 𝜆2(𝑋),
𝜅4(𝑋) ⇐= ℎ𝑎𝑝𝑝𝑦, 𝜅4(𝑋) ⇐= 𝑚𝑎𝑙𝑒(𝑋), 𝜅4(𝑋) ⇐= 𝑓𝑒𝑚𝑎𝑙𝑒(𝑋),

𝜅4(𝑋) ⇐= 𝑠𝑖𝑏𝑙𝑖𝑛𝑔(𝑋, 𝑌 ), 𝜅4(𝑌 ) ⇐= 𝑠𝑖𝑏𝑙𝑖𝑛𝑔(𝑋, 𝑌 ), 𝜅4 ⇐= 𝑝𝑎𝑟𝑒𝑛𝑡(𝑋, 𝑌 ),
𝜅4(𝑌 ) ⇐= 𝑝𝑎𝑟𝑒𝑛𝑡(𝑋, 𝑌 )}

Such rule insertion results in demanded structure.

8.3.1. Correlation maximization

The only process that is left to be lifted is the correlation maximization process. The
task, which arisen from the lifting, is equal to maximization of predicate w.r.t. the
output. The output used in LRNNs, as defined before, is one 𝜆 predicate with zero
arity, thus the sum over residual output neurons’ errors vanishes and each time 𝐸 is
used, residual error given by the only one output LRNNs’ neuron is meant; 𝐸𝑠 then
means average of those errors equation (4.3).

Recall that the added cascade rules set is entailed by candidate predicate of type 𝜆.
Therefore the maximization process should be rooted in this predicate, or correspond-
ing ground neurons, and run only through one layer of learnable weights. Since each
predicate may be grounded multiple times within a ground network, possible having
different bindings each time, multiple neurons may corresponding to a single predicate.
The task, which has to be solves, is to aggregate these values in order to run the cor-
relation maximization. We propose to firstly compute 𝑉𝑠 equation (8.1), and average
of output values of ground candidate neurons corresponding to candidate predicate;
then to use these values to gradient ascent. The correlation is now given by equa-
tion (8.4), which is the change we had discussed, and its partial derivative is given by
equation (8.5).

𝑉𝑠 = 1
|𝑏𝑖𝑛𝑑𝑒𝑑𝐻𝑒𝑎𝑑 ∈ 𝑆|

∑︁
𝑏𝑖𝑛𝑑𝑒𝑑𝐻𝑒𝑎𝑑∈𝑆

𝑉𝑠,𝑏𝑖𝑛𝑑𝑒𝑑𝐻𝑒𝑎𝑑 (8.1)

𝑉 = 1
|𝑠𝑎𝑚𝑝𝑙𝑒𝑠|

∑︁
𝑠

𝑉𝑠 (8.2)

𝐸 = 1
|𝑠𝑎𝑚𝑝𝑙𝑒𝑠|

∑︁
𝑠

𝐸𝑠 (8.3)

𝐶 = |
∑︁

𝑠

(𝑉𝑠 − 𝑉 )(𝐸𝑠 − 𝐸)| (8.4)

𝜕𝐶

𝜕𝑤𝑖
= sign(𝑐𝑜𝑟𝑟𝑒𝑙𝑎𝑡𝑖𝑜𝑛)

∑︁
𝑠

(𝐸𝑠 − 𝐸)𝑓 ′
𝑠𝐼𝑠,𝑖 (8.5)
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8.4. Lifted TopGen

Having defined those equations, arbitrary gradient ascent can be run. For this pur-
pose stochastic gradient descent, developed for LRNNs, was taken and modified to
perform correlation maximization of the given candidate predicate.

8.4. Lifted TopGen
The lifting of TopGen algorithm into the first-order level can be done in a few changes
within the algorithm. Only the parts, where non-trivial lifting of TopGen’s techniques
occur, are described here in details. The rest of the method stays the same, only,
informally speaking, each time a neuron is replace by a rule.

One of the simpler differences is deciding whether a predicate is and or or. This
is given by the template, thus instead of biases’ comparison, the question reduces to
whether a given predicate is 𝜆 or 𝜅. There are two more differences to be processed –
counting of false positives or negatives, and rule extension technique to decrease these
values.

8.4.1. Counting false positives and negatives

There is a major difference between propositional and ground networks. In the former,
since there is only one neural network, it is ensured that a given neuron is there for ever
sample’s input. This does not hold in the later, since a predicate can bind in multiple
ways. In each of these ways, it may produce different output value. Thus, while
computing whether a predicate is false positive or negative, an aggregation technique
has to be decided before further computation. One approach, finally applied, is to
take an average over the predicate’s ground neurons within one sample; it is the same
aggregation technique as the one during correlation maximization.

The rest of incrementing false positives and negatives counters is the same as in
propositional case. Recall that such counting is useful, and is done, only for neurons
having bounded activation functions. The descent order for computed counters is the
same; ties are broken in favour of the predicate with shortest maximal length to terminal
predicate.

8.4.2. Decrease of false positives and negatives

Decreasing a false positives or negatives splits to four possible cases given by predicate
meaning and whether it is a false positive or negative case. Recall that each predicate
is strictly to be either 𝜆 or 𝜅, thus mimicking either ∧ or ∨. Therefore no comparison
of a neuron’s bias is done.

Before deeper analysis of the extensions, the idea of addition of new predicates is to be
mentioned, because it occurs in all of these extensions. In these cases, a base rule set is
generated for each new base 𝜅 that is to be added somewhere in the rule producing false
negatives or positives. One may come up with an idea of reusing already constructed
base rules, but such approach would be insufficient, because instead of giving freedom of
weights of the newly created neurons, those would be shared with some already existing
used neurons. This lifting is based on TopGen, although instead of creating base rules
all the time, some other rule generator can be used. For the parallel with TopGen, a
base rule set are used to describe the lifted case.

Let us start with 𝜆 predicate entailing a set of 𝜅; we do not consider arities right
now. In order to decrease its false negatives, outputs of its 𝜅 body predicates should
be increased. Therefore, for every 𝜅𝑖/𝑎 in its body, one new 𝜆𝑖𝐵 /𝑎, for which new base
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8. Transfer of selected structure learning approaches to first-order logic

rules set, is generated; to be precise, a the set is constructed to be entailed by 𝜅𝑖𝐵 /𝑎. Of
course that corresponding rules in the form of 𝜅𝑖/𝑎 ⇐= 𝜆𝑖𝐵 /𝑎 and 𝜆𝑖𝐵 /𝑎 ⇐= 𝜅𝑖𝐵 /𝑎
are created. Note that arbitrary variable ordering technique can be used to generate
those rules, and it depends on user specification.

Example 8.4. In order to decrease false negatives of 𝜆/𝑎 given 𝜆(𝑋, 𝑌 ) ⇐= 𝜅𝑎(𝑋)∧
𝜅𝑏(𝑌 ) and base predicates

𝐵 = {𝑚𝑎𝑙𝑒/1, 𝑓𝑒𝑚𝑎𝑙𝑒/1, 𝑠𝑖𝑏𝑙𝑖𝑛𝑔/2}

the following set of rules will be created using root chain order:

{𝜅𝑎(𝑋) ⇐= 𝜆𝑎(𝑋), 𝜆𝑎(𝑋) ⇐= 𝜅𝑎𝑏
(𝑋), 𝜅𝑎𝑏

(𝑋) ⇐= 𝑚𝑎𝑙𝑒(𝑋),
𝜅𝑎𝑏

(𝑋) ⇐= 𝑓𝑒𝑚𝑎𝑙𝑒(𝑋), 𝜅𝑎𝑏
(𝑋) ⇐= 𝑠𝑖𝑏𝑙𝑖𝑛𝑔(𝑋, 𝑌 ), 𝜅𝑎𝑏

(𝑌 ) ⇐= 𝑠𝑖𝑏𝑙𝑖𝑛𝑔(𝑋, 𝑌 ),
𝜅𝑏(𝑋) ⇐= 𝜆𝑏(𝑋), 𝜆𝑏(𝑋) ⇐= 𝜅𝑏𝑏

(𝑋), 𝜅𝑏𝑏
(𝑋) ⇐= 𝑚𝑎𝑙𝑒(𝑋),

𝜅𝑏𝑏
(𝑋) ⇐= 𝑓𝑒𝑚𝑎𝑙𝑒(𝑋), 𝜅𝑏𝑏

(𝑋) ⇐= 𝑠𝑖𝑏𝑙𝑖𝑛𝑔(𝑋, 𝑌 ), 𝜅𝑏𝑏
(𝑌 ) ⇐= 𝑠𝑖𝑏𝑙𝑖𝑛𝑔(𝑋, 𝑌 )}

To end the extension of 𝜆/𝑎, let us take the former instantiation and describe reduc-
tion of false positives. Driven by the same idea, as in the propositional case, the rule
body implying 𝜆 should be extended by a fresh new base 𝜅/𝑎.

Example 8.5. In order to decrease false positives of 𝜆/2 given 𝜆(𝑋, 𝑌 ) ⇐= 𝜅𝑎(𝑋) ∧
𝜅𝑏(𝑌 ) and base predicates

𝐵 = {𝑚𝑎𝑙𝑒/1, 𝑓𝑒𝑚𝑎𝑙𝑒/1, 𝑠𝑖𝑏𝑙𝑖𝑛𝑔/2}

a base rule set entailed by fresh new 𝜅1/2 is created and the former 𝜆 rule, using root
chain order, is replaced by:

𝜆(𝑋, 𝑌 ) ⇐= 𝜅𝑎(𝑋) ∧ 𝜅𝑏(𝑌 ) ∧ 𝜅1(𝑌, 𝑍)

The created base rules set entailed by 𝜅1/2 is not shown, since it is similar to the
ones generated in Example 8.4.

So far, 𝜆 extensions were covered, thus next 𝜅 extensions are described. Let us start
with the simpler one, decrease of false negatives. Given 𝜅/𝑎, new base rule set, entailed
by fresh new 𝜆𝑏/𝑎, is created. Thereafter, rule entailing 𝜆𝑏/𝑎 by 𝜅/𝑎 is created.

Example 8.6. In order to decrease false positives of 𝜅/1 and base predicates

𝐵 = {𝑚𝑎𝑙𝑒/1, 𝑓𝑒𝑚𝑎𝑙𝑒/1, 𝑠𝑖𝑏𝑙𝑖𝑛𝑔/2}

base rules set entailed by fresh new 𝜆1/1 is created and the former and new rule is
produced:

𝜅(𝑋) ⇐= 𝜆1(𝑋)

A base rules set entailed by 𝜆1/ is not shown, since it is similar to the ones generated
in Example 8.4.

The last extension aims to decrease false positives of 𝜅/𝑎 predicate. In order to do
that, replace all occurrences of 𝜅 in rules’ heads by a fresh new 𝜅𝑖/𝑎. Then create a base
rules set entailed by fresh new 𝜅𝑏. Thereafter, create a new 𝜆/𝑎 rule that is implied by
both 𝜅𝑖/𝑎 and 𝜅𝑏/𝑎. Finally, entail 𝜆/𝑎 by 𝜅/𝑎.
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8.5. Lifted REGENT

Example 8.7. In order to decrease false positives of 𝜅/1, base predicates

𝐵 = {𝑚𝑎𝑙𝑒/1, 𝑓𝑒𝑚𝑎𝑙𝑒/1, 𝑠𝑖𝑏𝑙𝑖𝑛𝑔/2}

and part of template

𝑇 ′ = {𝜅(𝑋) ⇐= 𝜆1(𝑋), 𝜅(𝑋) ⇐= 𝜆2(𝑋)}

following predicates will be created: 𝜅𝑖/1 as copy of 𝜅/1, intermediate 𝜆𝑖/1 and base
𝜅𝑏. Both rules from 𝑇 ′ will be removed. The following rules, beside the base ones, using
chain root order, will be created:

{𝜅(𝑋) ⇐= 𝜆𝑖(𝑋), 𝜆𝑖(𝑋) ⇐= 𝜅𝑖(𝑋) ∧ 𝜅𝑏(𝑋),
𝜅𝑖(𝑋) ⇐= 𝜆1(𝑋), 𝜅𝑖(𝑋) ⇐= 𝜆2(𝑋)}

Base rules set entailed by 𝜅𝑏/1 is not shown, since it is similar to the ones generated
in Example 8.4.

A question arises to investigate real impact of this extension to decrease of false
positives. By looking at the process, one can easily see that the 𝜅𝑖 is in the place where
𝜅 was originally, thus the problem may stay there. Contrary, 𝜅’ false positives may
decrease.

8.5. Lifted REGENT
Lifting of REGENT differs from its propositional case only by lifted mutation and
crossover operators. The only parts left to be lifted are neuron deletion and crossover,
which are not direct lifting of the propositional world. Note that in lifted version of
REGENT, mutation on freshly crossovered individuals was not take into account.

8.5.1. Rule deletion
Rule deletion arises by lifting neuron deletion. Lifting the process in every detail, a
predicate should be removed from a template, however, we decided to delete only one
rule. Moreover, the task of template mutation can be seen as nothing else than genetic
programming fitted for this application.

The process is done in a very straightforward way. Given a template 𝑇 , a randomly
chosen rule from 𝑇 with head 𝑝, which does not imply 𝜆𝑓 nor 𝜅𝑓 , is removed from 𝑇 .
After the rule is removed, a reachability check for every predicate is executed from root
𝜆𝑓 . The reachability check is a process, during which the theory is traversed as a tree,
here given by clauses, from given root, returning a set of reachable and unreachable
predicates.

8.5.2. Crossover
As noticed in the previous case of rule deletion, the task of changing template can be
seen as a genetic programming. Lifting REGENT’s crossover strategy in one to one
relation is not an easy task. This is can be cause mainly by adding feed forward edges
between neurons of two adjacent layers in the final crossover step. Splitting neurons to
two different sets is harder for in the lifted level as well.

In spite of these facts, we propose simpler crossover based on genetic programming.
The key idea is to switch parts of templates between two given parents producing two
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8. Transfer of selected structure learning approaches to first-order logic

new offspring; let call these parent templates 𝑇1 and 𝑇2. In order to do that, the
crossover firstly selects either 𝜆 or 𝜅, both having the same arity, from each template;
let us refer them as 𝑝𝑖 according to the parent index. Note that it is important to take
the same predicate type from both templates, otherwise inconsistent templates would
be created. Then, from each template a part rooted by the 𝑝𝑖 is copied; let us call it 𝑆𝑝𝑖 .
Thereafter from template 𝑇𝑖 all predicates and rules that are reachable from 𝜆𝑓 only
through 𝑝𝑖 are removed. Then names of both predicates are switched and 𝑆𝑝1 is added
to 𝑇2 with fresh names of predicates, except of the base ones; the second offspring is
created in the same way using 𝑇1 and 𝑆𝑝2 . Valid non-recursive templates are produced
by this approach.

8.6. Structure Learning with Selective Forgetting in first-order
level

SLSF is in the first-order predicate level, the same as in the propositional (section 4.6).
General equations in that section correspond to the case for SLSF run on LRNNs.
Looking in more details, the difference is in derivation of 𝐽 ′ where 𝐽 is may be defined
differently than in LRNNs, but its derivation is different from the propositional view
naturally; the reasons for that are shared weights in LRNNs. but this is no concern
of us, since the structure learning backed by the regularization is hidden in the term
containing 𝜖.

8.7. On mixing strategies
Till now, design of transferring structure learning approaches from propositional to
the first-order predicate logic was investigated, by lifting rule generation and insertion
strategies. These two parts can be combined, resulting in new approaches.

Beautiful example of generalization is lifted TopGen’s template extension. Instead of
adding base rules set, multiple ways are possible. The idea behind TopGen’s template
extension is to add new learneable weights, so base rules set is right choice. However,
there is a possibility of decrease of false negatives in a different way. For example, by
adding a frequent pattern instead of base rules set. The rationale behind this roots from
weight learning phase. Given a frequent pattern, rather a smaller number of learnable
weights, than all of the possible combinations, created by adding a base rule, arise in
the ground networks. Of course, this template change strategy assumes that no neuron
is negatively correlated to the output. Thus limiting the capability of the produced
template.

Speaking of Lifted REGENT, different mutation operations may be used. One such
mutation is just using the random rule generator. Other techniques from relation
learning may be used as well.

Both beam and local search can take any of these template change strategies as
successors generators components.

48



9. Comparison of proposed first-order
structure learning approaches

This chapter describes an experimental comparison of the proposed first-order NSI
structure learning approaches. These approaches were incorporated into LRNNs engine
and tested against original LRNN method and one standard relational learning method.

9.1. Datasets and methodology
Two datasets were used for the comparison. The first one is Mutagenesis (MUT) [107], a
dataset containing 188 molecules labeled according to their mutagenicity. The second is
Predictive Toxicology Challenge on Mouse Rats (PTC-MR) [108], a dataset containing
344 chemical compounds labeled according to their carcinogenicity.

Errors were estimated by 10-fold stratified crossvalidation. All experiments, except
the kFoil’s ones, used the same folds.

9.2. Compared methods
All of the proposed first-order structure learning approaches, as well as the original
LRNN method, were tested on the two datasets. Methods are named by their proposi-
tional origin for simplicity of legends, instead of writing lifted everywhere; thus DNC,
CasCor, TopGen, REGENT and LRNN corresponds to section 8.2, section 8.3, sec-
tion 8.4, section 8.5 and Chapter 6 respectively. For the sake of readability, in some
legends CC, TG, RE, LR and LS denote CasCor, TopGen, REGENT, LRNN and local
search respectively. Local search corresponds to local search section 8.1, which gener-
ates successors by random rule generator with constraints section 7.4. Parameters used
within these experiments are described in Appendix B. For comparison with standard
relational methods, results of kFoil [109] were taken from [3].

9.3. Initial templates and parameters
All methods, except DNC and CasCor, need an initial template, therefore one for PTC-
MR and three for MUT were constructed. The MUT’s first template is very similar to
the PTC-MR one; it composes of one layer of three base 𝜆 entailed by 𝜅𝑓 . The two next
MUT’s templates were based on the idea of having a layer of 𝜆 predicates corresponding
each possible combination of three base 𝜅. The difference between these two lies in the
number of literals of these 𝜆 rules’ bodies; the simpler and the complex one allow 4 and
7 literals respectively. These three templates will be denoted by subindex in order of
appearance in this paragraph.

All methods were tested with chain root order, and sliding window or first window
only options. Thus sliding window and first window only will be denoted by subindices
S or F respectively. The only exception is local search which was run with random
variable order. Another parameter, which can be tested only on DNC and CasCor, is
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Figure 9.1. Train and crossvalidation errors, together with time requirements of selected meth-
ods on PTC-MR dataset.

arity of 𝜅𝑓 ; two values, 0 and 1, were tested. The subindex 𝐴 will be used to denote
that 𝜅𝑓 with arity 1 was used in the experiment. See appendix B.2 for more information
about parameters’ settings.

Note that LRNNs parameters were not tuned so much as in [3] for the sake of saving
computational resources.

9.4. Evaluation

After all experiments were completed, we decided to show only the best result for each of
the methods among their possible settings. However, the initial theory is not taken into
account as a setting. Crossvalidation and train errors, together with time requirements
for PTC-MR and MUT dataset are shown in Figures 9.1 and 9.2. Some methods, for
example REGENT or local search, wasted all computational resources on some initial
templates, and thus they are not shown.

Let us firstly start with methods that do not use initial templates, i.e. with DNC and
CasCor. Considering MUT dataset, one can see that DNC found similar solution to
kFoil, but it is prone to overfitting. Similar behavior of DNC can be found on the PTC-
MR dataset, see Figures 9.1a and 9.1b. CasCor produced different results than DNC.
It was outperformed by every other method on MUT, also having high train error.
Contrary, on the PTC-MR dataset, CasCor produced similar error to kFoil. This is
quite an interesting observation, however, more datasets would be probably needed for
its proper confirmation.

Let us now compare results of methods that do start with some initial template.
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9.5. Conclusion

The regularization based method SLSF did not produce any interesting results. More
or less, it gives the same results as LRNN. This can be given by two facts: either
the selective forgetting threshold was too low to be applied, or another regularization
technique should be used in the context of neural networks with shared weights.

By observing results of TopGen, REGENT, local search and LRNN, one can notice
that the results depend on the initial template. Each of these methods, except LRNN,
should produce a better result than LRNN, because they provide some sort of heuristic
extension of the original template in order to find a better one. Some of the initial
templates used for MUT were extensively manually tuned in order to get better accu-
racy than standard relational learners. The second of these initial templates produces
average accuracy around 15%, which is a comparably hard result to beat, even more
difficult since the dataset is quite small. However, as one can see in Figure 9.2b, several
of our newly proposed structure-learning methods found a template producing better
accuracy.

More interesting results are the ones in Figure 9.1b, because quite simple methods
as TopGen and REGENT produced templates with app. 20% better accuracy than
the original one learned by LRNN; having app. 8% better accuracy than kFoil. The
interesting fact here is that LRNN produces worse accuracy than kFoil, given the same
initial template as TopGen and REGENT. The results produced by TopGen are sur-
prising because of two facts: the idea that backs TopGen does not hold in all cases, and
TopGen did not produce any interesting results within propositional experiments.

In order to compare how much better the heuristic extensions can do as compared to
the more simple random strategies, the local search, driven by random rule generator
with constraints, was designed and implemented. One can see that the heuristic exten-
sions, e.g. TopGen, really produce better results than such a simple random approach.

Comparing the methods from the computational side, it was expected that SLSF’s
and LRNN’s computational times would be equal. Also, given the fact local search,
TopGen and REGENT rely on complex search-based strategies, one can easily conclude
that their training times would be high, since they can often produce computationally
expensive templates. It was expected that CasCor and DNC would have higher training
time than LRNN, but smaller than REGENT for example, but this does not hold
for DNC. It is caused by a non-optimal implementation. For example, incremental
regrounding would help a lot; this term stands for grounding only a certain extension
of a template while reusing previous grounding of that template.

9.5. Conclusion
To sum up this chapter, three facts can be concluded. Firstly, DNC tends to overfit
in the first-order NSI as well as in the propositional case. Secondly, results given by
LRNN are dependent on given template. Thirdly, the idea behind TopGen seems to
work well in the first-order NSI. In fact, TopGen produces better results on PTC-MR
than state-of-the-art relational methods. Rest of the methods tend to behave differently
from dataset to dataset and for their deeper comparison more dataset would be needed.
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Figure 9.2. Train and crossvalidation errors, together with time requirements of selected meth-
ods on MUT dataset.
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10. Conclusion

This thesis presents a review of neural-symbolic integration methods from both propo-
sitional and first-order logic level. Several propositional methods were described and
experimentally compared on 56 datasets. A transition to first-order predicate level was
proposed for each of these methods. Proposed designs were incorporated with Lifted
Relational Neural Networks and experimentally evaluated on two relational datasets.
The results show that some of these approaches improve LRNNs accuracy, eventually
leading to better accuracy than general state-of-the-art relational learners.

10.1. Future work

Although all the main goals of this thesis were accomplished, a set of new questions
and ideas has arisen. Considering the developed propositional testbed, two interesting
ideas can be further investigated. Firstly, it can be used, after some enhancements,
to test and compare activation functions with respect to behaviors of logical operators
within NSI.

Secondly, the propositional testbed can be used to test whether some of the methods
is able of deep learning. More precisely, whether a given method is capable of learning
latent concepts by introducing multiple dependent dataset’s outputs.

For instance, let us have a dataset with 𝑎, 𝑏, 𝑐, 𝑑, 𝑒, 𝑓, 𝑔 as inputs and two outputs.
Let 𝜑⇔ 𝑎∧ 𝑏 and 𝜔 ⇔ ¬𝑓 ⊕ (𝑔 ∨ 𝑒). The first dataset’s input will match 𝜑∧¬𝜔 while
the second ¬𝜑 ∧ 𝜔. After learning of both the weights and the structure, the produced
networks should be examined whether they have developed neurons corresponding to
𝜑 and 𝜔.

The network examination can be done in multiple ways; e.g. by rule mining al-
gorithm TREPAN [110], since it is the only one rule mining algorithm with existing
implementation to our knowledge.

Considering the first-order predicate part, the most interesting question is to inves-
tigate TopGen deeper, because it worked in the FOL so well, but did not produce any
interesting results on the propositional level. Other ideas that arose during the work in
the FOL level can be described as follows:
∙ Incorporation of standard crisp techniques from relational learning, while using

them as rule generators, might provide promising results. We believe that using
e.g. frequent first-order rules could be more beneficial than inserting base rules all
the time.
∙ Using a constraint, probably domain dependent, grammar each time, instead of

proposed variable orders, is another potential source of speed up of the learning
process.
∙ Learning a hyper-heuristic [111] using described rule creation and insertion strate-

gies could be investigated.
∙ Invention of incremental regrounding to speed up learning process could be intro-

duced. The term describes following situation. Given a template and its extension,
only the difference between the two would be grounded as the rest would be taken

53



10. Conclusion

from the previously grounded templates, respectively. Although this would be the-
oretically and memory demanding process, it could result in huge improvements
in speed up.

We believe that some of these extensions could achieve better accuracy or provide a
speed up for learning process.
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Appendix A.

Implementation notes

Both projects, propositional testbed and lifted structure learning approaches, have been
implemented in Java 8. The implementation is focused on two things: modularity,
allowing further extensibility, and parallelization, allowing speed up while executing
experiments. Both codes are heavily based on usage of Java 8 streams and lambda
functions. This technique often allows easy parallelization as well as coding style. On
the other hand, source code reader who is not familiar with functional programming
approach (especially streams) may struggle while reading the code.

A.1. Propositional testbed
Even though several parallelization enhancements have been implemented, they are
no discussed in the text; for example, one of them is used in correlation computation.
Moreover, everything what could be easily parallelized, was parallelized. While applying
this approach, the fact that testbed has been evolved with heavy emphasis on stateful
and stateless side of implemented classes, helped much.

The project, within which the propositional testbed is implemented, also contains
the described formulae generator (it is dependent on [97]) as well as parameters setting
generators.

A.2. Lifted structure learning approaches
Lifted structure learning techniques have been implemented to the already existing
project [3]; the code is probably to be rewritten in following months in order to perform
another experiments. There has been one big goal while designing the architecture
needed for the lifted structure learning approaches. The goal was to separate predicate
rule generation and rule insertion process apart. This was fully accomplished. Thus,
one can easily extend Lifted TopGen to insert not only base rules, but arbitrary set of
rules that is desired by a new structure learning approach.
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Appendix B.

Experiments’ parameters

B.1. Propositional experiments

All methods were tested using the same weight learning algorithm, Backpropagation
with momentum in this case; its setting is in Table B.1. Other important parameters
are shown in tables B.1 to B.3. Note that KBANN’s and TopGen’s parameters used
in REGENT are the same as in the original methods; the same holds for TopGen’s
parameters that are used in REGENT.

During the experiments, all runs of one method shared the same random generator
over one dataset; each of the runs was invoked separately in parallel inside the appli-
cation. The application shared Java’s java.util.Random random generator with seed
equal to 13.

Finally, stopping criterion of each method should be mentioned. Each of these meth-
ods, except KBANN and SLSF, works in a cycle. At the end of each cycle, currently
best solution is updated in case that the new solution is better. The loop is stopped
when the learning has converged. The process converges if its error curve flattens. This
is mathematically given by equation (B.1), where user specified 𝑙 stands for long time
window, 𝑠 for short time window, 𝜖𝑐 for a threshold given by user, and the rest corre-
sponds to the current loop: 𝑒𝑖 is MSE error in time 𝑖. All experiments were run with
𝑙 = 30, 𝑠 = 10 and 𝜖𝑐 = 0.1.

|𝑎𝑣𝑒𝑟𝑎𝑔𝑒(𝑒𝑡−𝑙, . . . , 𝑒𝑡−1, 𝑡)− 𝑎𝑣𝑒𝑟𝑎𝑔𝑒(𝑒𝑡−𝑠, . . . , 𝑒𝑡−1, 𝑡)| < 𝜖𝑐 (B.1)

Table B.1. Parameters of Backpropagation, Dynamic Node Creation and KBANN

Backpropagation value DNC value KBANN value

epoch 2500 𝛿𝑇 0.05 𝜔 4

learning rate 0.7 𝑤 100 perturbation 0.3

momentum 0.3 neurons limit 200

𝑐𝑎 10−3

𝑐𝑚 10−2

Table B.2. Parameters of Cascade Correlation and Structure Learning with Selective Forgetting

CasCor value SLSF value

neurons limit 200 𝜖 10−4

candidate size 4 𝜃 10−1
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B.2. First-order experiments

Table B.3. Parameters of TopGen and REGENT

TopGen value REGENT value

successors size 10 individuals selection tournament

open list length 60 tournament size 2

learning decay 0.9 population size 40

neuron activation threshold 0.15 # mutations 24

neuron validation set : train set 1:4 # mutations of crossovered 8

# crossovers 20

# elites 1

neuron deletion probability 0.5

edge weight limit after crossover 0.2

B.2. First-order experiments
Lifted DNC and Lifted CasCor were allowed to add at most 20 base rules. All methods
were allowed to 55 cycles of dataset groundings. Since the process of grounding grows
exponentially, only templates having the longest path from 𝜆𝑓 equal to 5 and up to
3000 rules were allowed; bigger templates were trimmed in each dimension to satisfy
this constrain. This constraint did not hold for Lifted CasCor, since it would limit the
hierarchical structure too much.

Lifted REGENT and Lifted TopGen, were run with unActive threshold set to 0.15.
Local search ran with both probability of 𝜆 and a new predicate creation equal to 0.5.
The random rule generator could generate up to 2 rules in each run, with head arities
ranging from 1 to 4. Detailed settings of parameters can be found in attached source
codes.
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Appendix C.

Content of DVD

Structure of the attached DVD is following:
∙ codes/NESISL – implementation of the propositional testbed
∙ codes/Neurogical – project containing lifted structure learning methods incorpo-

rated in LRNNs engine
∙ thesis – folder containing thesis in PDF
∙ thesis/source – LATEX sources of the thesis
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